Public Logistics Networks for Home Delivery

Michael G. Kay North Carolina State University Raleigh, NC, USA

Research

- Goal:
 - To eliminate the need for all non-recreational shopping by making it possible to have a hot pizza and a vehicle-load of other stuff delivered to your home, exactly when you want, for the price of what you would have tipped the pizza delivery guy
- Activity:
 - Provide tools for expanded role of public logistics networks in intercity trucking and urban logistics
 - Particular focus: home delivery using autonomous vehicles
 - Tools include design methodologies, performance analysis, and protocol/mechanism specifications

Challenges

- Home delivery has increased during the pandemic
- Just increasing scale of current driver-based delivery not sustainable:
 - Multiple vans each make separate deliveries of a few small items in non-reusable packaging
 - Leads to congestion and mountains of packaging requiring disposal
- Autonomous vehicles and drones can't just directly replace driver-based delivery
 - Autonomous vehicles can't unload a package at a home
 - Drones limited to high value urban home delivery due to cost and noise, most useful for rural home delivery

Opportunities

- Delivery via autonomous vehicle much easier than passenger transport
 - less "edge cases" due to slow travel and can avoid bad weather
- Major tech bottleneck:
 - Person needed to unload autonomous vehicle at home
- Solution:
 - Consolidate all items to deliver when customer at home
 - Requires rethinking type of logistics network that can best support home delivery (P2P instead of Multi-stop)
 - P2P delivery \Rightarrow Automated DCs located close to customer
- P2P \Rightarrow Backhaul available from home to DC \Rightarrow
 - Empty containers can be returned on same vehicle
 - Feasible means of implementing reuse instead of recycle
- Long term \Rightarrow Need to travel to store reduced/eliminated
 - Low cost means of allowing elderly/disabled to remain at home

Public vs Private Logistics Networks

Public Network	Private Network
Each vehicle and facility can be operated by <i>different</i> firm	<i>Single</i> firm (UPS, Amazon) coordinates network, owning all critical resources
Each vehicle/facility has access to potentially all of network's demand \Rightarrow scale economies and dense network	Each vehicle/facility has access to only single firm's portion of demand ⇒ <i>sparse</i> network
Decentralized control via open standards and coordination protocols \Rightarrow low barrier to entry	Centralized control via firm-specific proprietary standards and coordination procedures \Rightarrow high barrier to entry

- High degree of public facilities for ocean and air logistics
- **Mix** of public/private networks for rail
- Few public networks for intercity trucking and urban logistics
 - Public terminals on outskirts of cities in Japan used to consolidate deliveries to stores in congested city centers

Vehicles for Home Delivery

(a) Delivery van (\$1.58/del)

(b) Nuro delivery vehicle (\$?/del)

(d) Starship delivery robot (\$1.89/del)

(e) Drone (\$0.80/del)

(f) Customer pickup at store (\$11.94/trip)

Relative Cost of Transportation Alternatives

Multi-stop versus Point-to-Point Delivery

(a) Multi-stop deliveries from a single DC.

(b) Point-to-point deliveries from several DCs.

Consolidated On-demand Home Delivery

Home Delivery Alternatives

Unloading at Home	Point-to-Point On-Demand Delivery	Multi-stop Delivery Window
Customer Supervised	 Time-sensitive driver-based (groceries, pizza) Autonomous vehicle (manual home unloading) 	 Bulk-item driver-based (furniture, appliances)
Unattended (packaged/container)	• Drone	 Time-insensitive driver-based (UPS, USPS, FedEx) Autonomous vehicle (auto home unloading)

Current Research Areas

1. Network Design

 Develop network design procedure to determine the number and location of DCs for a metro area

2. Storage System Control

Unload, store, and load each container in a DC

3. Coordination Mechanism

Develop mechanism to coordinate the operation of each container, vehicle, and DC in the network

4. Performance Analysis

 Estimate delivery times and associated cost for given logistic network

1. Network Design

Network Design Procedure

Design Parameters:

- 1. Number of people served by a grocery store
 - LB for avg trip distance
- 2. Average DC loads per hour
 - Network capacity
- 3. Average packages delivered per week per person
 - Network demand
- 4. Average vehicle speed
- 5. Average packages transported by vehicle
 - Determines number of vehicles required

```
Algorithm 1 Design Logistics Network
   procedure DesignNetwork(m, X_p, q_p, a_p)
                                                                     \triangleright Given data for m ADPs
       f_p \leftarrow \text{INITIALLOADDEMAND}(q_p)
                                                                              Initial ADP loads
       W_p \leftarrow \text{DEMANDWEIGHT}(X_p, q_p, a_p)
                                                                        ▷ ADP demand weights
       repeat
           n, X, F \leftarrow \text{LOCATEDC}(f_p, X_p, a_p)
                                                                  \triangleright Returns location of n DCs
           for i \leftarrow 1, n do
                for j \leftarrow 1, m do
                     A(i,j) \leftarrow \frac{F(i,j)}{f_{\tau}(j)}
                                                                             ▷ Allocation matrix
                end for
           end for
           for i \leftarrow 1, n do
                for j \leftarrow 1, n do
                    W(i,j) \leftarrow \sum_{m=1}^{m} \left[\sum_{k=1}^{m} A(i,l) W_p(l,k) \right] A(j,k)
                                                                                     \triangleright ADP to DC
                end for
           end for
           f_L \leftarrow \text{LOCALLOADDEMAND}(q_p, W)
                                                                                 ▷ DC local loads
           for i \leftarrow 1, n do
                a(i) \leftarrow \sum_{i=1}^{n} a_p(j)A(i,j)
                                                                              \triangleright ADP to DC area
           end for
           f_H \leftarrow \text{LINEHAULLOADDEMAND}(q_p, W, X, a)
                                                                             ▷ DC linehaul loads
           done \leftarrow \text{TRUE}
           for i \leftarrow 1, n do
                u(i) \leftarrow \frac{f_L(i) + f_H(i)}{f_L(i)}
                                                                                      ▷ Load factor
                               FMAX
                if |u(i) - 1| > \epsilon then
                     done \leftarrow FALSE
                end if
           end for
           for i \leftarrow 1, m do
               f'_p(j) \leftarrow \sum_{i=1}^n u(i)A(i,j)f_p(j)
                                                                      Adjusted ADP demand
                f_p(j) \leftarrow (1-\alpha)f_p(j) + \alpha f'_n(j)
                                                                        ▷ Update ADP demand
           end for
       until done = TRUE
  end procedure
```

2. Storage System Control

DC (top view of one level)

Path Planning and Execution

- Module ≤ Container ≤ Shipment ≤ Load
- 3-D (*x*, *y*, *t*) A* used for planning path of each container
- Each container assigned unique priority that determines planning sequence
 - Paths of higher-priority containers become obstacles for subsequent containers
 - First-in-last-out loading/unloading → must change container priority from when it is unloaded to when it is loaded
- Adaptive priority adjustment to correct for:
 - Delay along planned path
 - Deadlock detection
- Destination of containers in long-term storage is maxmin distance to other containers

2-D Paths

2-D Paths

3-D Paths

Example: Loads on DDVs Arrive to DC

Example: Loads Unloaded into DC

Example: Containers Move to Staging

Example: Containers Loaded on DDVs

3. Coordination Mechanism

- Mechanism determines:
 - Which shipments form a load
 - How cost paid to carrier (vehicle) to transport load is allocated to shipments
- Mechanism tries to match shipments that value transport the highest with vehicles that can provide it at least cost:
 - Shipment(s) bid for transport (reverse of Uber)
 - Strong incentives for early bidding
 - Public data + Computationally efficient online protocols ightarrow
 - Shipments can determine their exact cost prior to bidding
 - Most processing is planning done locally by shipments/vehicles

Package Bidding vs. Platform Pricing

- Exploratory analysis of participation incentives for on-demand service platform for packages:
 - Packages bid for transportation service through auction mechanisms
 - Trucks offer transportation services
 - DCs match demand and supply

Mechanism	Average Number of Active Trucks	Average Earnings	Average Waiting Time of Packages
Platform Pricing	5.34	87.16	233 (± 119.46)
Package Bidding	22.143	93.0157	18.619 (± 18.977)

Figure 2: Package bid mechanism vs. platform pricing: (a) cumulative throughput at DC, (b) cumulative profit of DC, and (c) amount paid by the customer.

Diseconomies of Scale

Yellow containers spend/bid less on a per-unit basis to join a load that is leaving earlier due to their smaller size

(Containers 1-40 numbered in decreasing total bid; Loads 1-6 in increasing departure time)

4. Performance Analysis

Home Delivery Cost Estimate

	ime (min)	ace Util.		Household Demand (trips/week)															
ost				2								4							
le C				Modules per Trip								Modules per Trip							
Inbo	U T	\mathbf{S}		10				20				10				20			
ЭМ	I/I	DC		DC	Trip	Mod		DC	Trip	Mod		DC	Trip	Mod		DC	Trip	Mod	
50	5	0.6	1	1.46	2.27	0.23	9	2.27	3.19	0.16	17	0.73	1.54	0.15	25	1.14	2.05	0.10	
50	5	0.8	2	1.29	2.10	0.21	10	1.93	2.84	0.14	18	0.64	1.45	0.15	26	0.96	1.88	0.09	
50	10	0.6	3	1.46	2.27	0.23	11	2.27	3.19	0.16	19	1.32	2.13	0.21	27	1.64	2.56	0.13	
50	10	0.8	4	1.29	2.10	0.21	12	1.93	2.84	0.14	20	1.32	2.13	0.21	28	1.64	2.56	0.13	
100	5	0.6	5	2.51	3.39	0.34	13	4.01	5.02	0.25	21	1.25	2.14	0.21	29	2.01	3.01	0.15	
100	5	0.8	6	2.16	3.05	0.30	14	3.32	4.32	0.22	22	1.08	1.97	0.20	30	1.66	2.66	0.13	
100	10	0.6	7	2.51	3.39	0.34	15	4.01	5.02	0.25	23	2.12	3.01	0.30	31	2.71	3.71	0.19	
100	10	0.8	8	2.16	3.05	0.30	16	3.32	4.32	0.22	24	2.12	3.01	0.30	32	2.71	3.71	0.19	

(DC cost in \$, DC + vehicle cost = Trip cost in \$, Mod = cost per module delivered in \$)

Conclusion

- Biggest impact of this research is likely to result from availability of "free" backhauls from the home:
 - Recycling
 - Reusable containers
 - Presentation stock delivered to home
 - Home manufacturing

Student Researchers

- Ajithkumar Parlikad
- Ashish Jain
- Amogh Bansal
- Ling Xiang
- Peerapol Sittivijan
- Manish Tripathy
- Ekin Yalvac