ICA 18: Handling Cost Estimation

ISE 453: Design of PLS Systems

Spring 2020

1. A warehouse is being designed that will have a rectangular shape with a single I/O point located along its perimeter. Randomized block stacking will be used to store 4,800 different SKUs, each unit of which will be stacked six-high on identical $36 \times 40 \times 48 \mathrm{in}$. two-way pallets along 8 -ft-wide down aisles. The inventory levels of the SKUs are uncorrelated and are stored and retrieved at a constant rate. The average maximum inventory level of each SKU is two hundred and fifty units, and the area used for cross aisles, etc., will equal 15% of the storage area. Assuming all of the S / R operations are single command, determine the expected distance traveled for each operation.

Lane/unit-load width	x	3.3333333 ft	
Unit-load depth	y	3 ft	
Unit-load height	z	4	4 ft
No. different items	N	4,800	
Down aisle width	A	8 ft	
No. levels for stacking	H	6	
Avg max inv per item	M_{i}	250	
Est. max no. total units	M	600,000	$=\mathrm{FLOOR}\left(N^{*}\left(M_{i} / 2\right)+0.5,1\right)$
Optimal lane depth	D^{*}		7
Number of lanes	L	16,629	
Total area (2-D)	TA	$1,385,750$	ft^{2}
Cross aisle percentage		15%	
Total WH area (2-D)	TA	$1,593,613$	ft^{2}
sqrt(2)*TA'	$d_{S C}$	$1,785.28$	ft

2. A new warehouse is being designed to store 3,000 different SKUs. At its peak during the year, the warehouse will hold 50,000 loads. Randomized block stacking will be used to store $36 \times 36 \times 36 \mathrm{in}$. pallet loads, and all of the slots in the warehouse are equally likely to be used. The pallets can be stacked six-high along 8 -foot-wide down aisles. The warehouse will have a rectangular shape with a single I/O point located along its perimeter.
(a) Determine the minimum total 2-D area need for the warehouse, assuming that the area required for cross aisles, offices, and shipping/receiving docks equals 15% of the total storage area.
(b) Narrow-aisle reach trucks (NARs) will be used for all storage and retrieval operations truck (operator rides on truck). Loading or unloading each will require 30 seconds. Assuming all of the S / R operations are single command, determine the expected time required for each operation.
(c) If there are 250 eight-hour shifts per year and the fully burdened labor rate of a truck operator is $\$ 12.00$ per hour, determine the total annual labor costs assuming an expected annual demand of 500,000 single-command moves and that the operators can perform other productive tasks when not operating a truck.
(d) If there should be enough trucks to handle a peak demand that is 50% greater than the average demand and if each NAR has an investment cost of $\$ 25,000$ and will have a salvage value equal to 25% of its original cost at the end of 10 years, determine the total annual NAR cost assuming that the annual real cost of capital is 10%.

Lane/unit-load width	x	3	ft	
Unit-load depth	y	3	ft	
Unit-load height	z	3	ft	
No. different items	N	3,000		
Down aisle width	A	8	ft	
No. levels for stacking	H	6		
Est. max no. total units	M	50,000		
Optimal lane depth	D*	3		
Number of lanes	L	4,195		
Total area (2-D)	TA	163,605	ft^{2}	
Item area (2-D)		75,006	ft^{2}	
Cube utilization (2-D)		46\%		
Cross aisle percentage		15\%		
Total WH area (2-D)		188,146	ft^{2}	(a)
	$d_{S C}$	613.43	ft	
	$t_{L U}$	0.50	min	
	t_{e}	2.00	$\mathrm{min} / \mathrm{mov}$	(b)
		0.03	$\mathrm{hr} / \mathrm{mov}$	
Annual demand		500,000	SC mov/yr	
Labor rate		12	\$/hr	
Labor cost		199,582	\$/yr	(c)
Peak demand	$r_{a}{ }^{\text {peak }}$	375	$\mathrm{mov} / \mathrm{hr}$	
No. trucks	m	13		
Cost of Capital	(r)	10\%		
Economic Life	(N, yr)	10		
Investment Cost	(IV, \$)	25,000		
Salvage Percentage		25\%		
Salvage Value	(SV, \$)	6,250		
Eff. Investment Cost	(IV ${ }^{\text {eff }}, \$$)	22,590		
Cost Cap Recovery	($K_{t r}, \$ / \mathrm{yr}$)	3,676.48		
Total Vehicle Cost	$\left(m K_{t r}, \$ / \mathrm{yr}\right)$	47,794.19		(d)

