ICA 18: Handling Cost Estimation

ISE 453: Design of PLS Systems

Spring 2020

 A warehouse is being designed that will have a rectangular shape with a single I/O point located along its perimeter. Randomized block stacking will be used to store 4,800 different SKUs, each unit of which will be stacked six-high on identical 36 × 40 × 48 in. two-way pallets along 8-ft-wide down aisles. The inventory levels of the SKUs are uncorrelated and are stored and retrieved at a constant rate. The average maximum inventory level of each SKU is two hundred and fifty units, and the area used for cross aisles, etc., will equal 15% of the storage area. Assuming all of the S/R operations are single command, determine the expected distance traveled for each operation.

Lane/unit-load width	x	3.3333333	ft
Unit-load depth	У	3	ft
Unit-load height	Z	4	ft
No. different items	N	4,800	
Down aisle width	A	8	ft
No. levels for stacking	Н	6	
Avg max inv per item	M_i	250	
Est. max no. total units	М	600,000	$=$ FLOOR($N^*(M_i/2)$ +0.5,1)
Optimal lane depth	D*	7	
Number of lanes	L	16,629	
Total area (2-D)	TA	1,385,750	ft ²
Cross aisle percentage		15%	
Total WH area (2-D)	TA'	1,593,613	ft ²
sqrt(2)*TA'	d _{sc}	1,785.28	ft

- 2. A new warehouse is being designed to store 3,000 different SKUs. At its peak during the year, the warehouse will hold 50,000 loads. Randomized block stacking will be used to store $36 \times 36 \times 36$ in. pallet loads, and all of the slots in the warehouse are equally likely to be used. The pallets can be stacked six-high along 8-foot-wide down aisles. The warehouse will have a rectangular shape with a single I/O point located along its perimeter.
 - (a) Determine the minimum total 2-D area need for the warehouse, assuming that the area required for cross aisles, offices, and shipping/receiving docks equals 15% of the total storage area.
 - (b) Narrow-aisle reach trucks (NARs) will be used for all storage and retrieval operations truck (operator rides on truck). Loading or unloading each will require 30 seconds. Assuming all of the S/R operations are single command, determine the expected time required for each operation.

- (c) If there are 250 eight-hour shifts per year and the fully burdened labor rate of a truck operator is \$12.00 per hour, determine the total annual labor costs assuming an expected annual demand of 500,000 single-command moves and that the operators can perform other productive tasks when not operating a truck.
- (d) If there should be enough trucks to handle a peak demand that is 50% greater than the average demand and if each NAR has an investment cost of \$25,000 and will have a salvage value equal to 25% of its original cost at the end of 10 years, determine the total annual NAR cost assuming that the annual real cost of capital is 10%.

Lane/unit-load width	X	3	ft	
Unit-load depth	У	3	ft	
Unit-load height	Z		ft	
No. different items	N	3,000		
Down aisle width	A	8	ft	
No. levels for stacking	Н	6		
Est. max no. total units	М	50,000		
				_
Optimal lane depth	D*	3		
Number of lanes	L	4,195		
Total area (2-D)	TA	163,605	ft ²	
ltem area (2-D)		75,006	ft²	
Cube utilization (2-D)		46%		
Cross aisle percentage		15%		
Total WH area (2-D)		188,146	ft ²	(a)
	d _{sc}	613.43	ft	
	t _{LU}	0.50	min	
	te	2.00	min/mov	(b)
		0.03	hr/mov	
Annual demand			SC mov/yr	
Labor rate			\$/hr	
Labor cost		199,582	\$/yr	(c)
Peak demand	r a peak	375	mov/hr	
No. trucks	m	13		
Cost of Capital	(r)	10%		
Economic Life	(N, yr)	10		
Investment Cost	(IV, \$)	25,000		
Salvage Percentage		25%		
Salvage Value	(SV, \$)	6,250		
Surveyo Valuo	(,+)			
Eff. Investment Cost	(<i>IV</i> ^{eff} , \$)	22,590		
		22,590 3,676.48		