Computational Tools

Logistics Software Stack

- New Julia (1.0) scripting language
- (almost?) as fast as C and Java (but not FORTRAN)
- does not require compiled standard library for speed
- uses multiple dispatch to make type-specific versions of functions

PharmaCo Case Study

Exhibit A: Map of PharmaCo DC locations

2. Last year's P\&L showed distribution operating costs of $\$ 109.3$ million annually, subdivided into fixed DC operating, variable DC operating, and freight.

Exhibit B: Supply Chain Cost Profile

Suply Chain Costs (millions)				
Fixed Operating	Variable Operating	Transport-ation	Inventory Carrying	Total Supply Chain
$\$ 34.9$	$\$ 42.0$	$\$ 6.7$	$\$ 25.7$	$\$ 109.3$

Logistics Engineering Design Constants

1. Circuity Factor: $1.2(\mathrm{~g})$

- $\quad 1.2 \times$ GC distance \approx actual road distance

2. Local vs. Intercity Transport:

- Local: < $50 \mathrm{mi} \Rightarrow$ use actual road distances
- Intercity: > $50 \mathrm{mi} \Rightarrow$ can estimate road distances
- $\quad 50-250 \mathrm{mi} \Rightarrow$ return possible (11 HOS)
- $\quad>250 \mathrm{mi} \Rightarrow$ always one-way transport
- $\quad>500-750 \mathrm{mi} \Rightarrow$ intermodal rail possible

3. Inventory Carrying Cost $(h)=$ funds + storage + obsolescence

- 16% average (no product information, per U.S. Total Logistics Costs)
- $\quad(16 \% \approx 5 \%$ funds $+6 \%$ storage $+5 \%$ obsolescence)
- 5-10\% low-value product (construction)
- 25-30\% general durable manufactured goods
- 50\% computer equipment
- >> 100\% perishable goods (produce)

Logistics Engineering Design Constants

4. $\frac{\text { Value }}{\text { Transport Cost }} \gg 1: \quad \$ 1 \mathrm{ft}^{3} \approx \frac{\$ 2,620 \text { Shanghai-LA/LB shipping cost }}{2,400 \mathrm{ft}^{3} 40^{\prime} \text { ISO container capacity }}$
5. TL Weight Capacity: 25 tons $\left(K_{w t}\right)$

- (40 ton max per regulation) (15 ton tare for tractor-trailer) = 25 ton max payload

- Weight capacity $=100 \%$ of physical capacity

6. TL Cube Capacity: $2,750 \mathrm{ft}^{3}\left(K_{c u}\right)$

- \quad Trailer physical capacity $=3,332 \mathrm{ft}^{3}$
- Effective capacity = $3,332 \times 0.80 \approx 2,750 \mathrm{ft}^{3}$
- Cube capacity $=80 \%$ of physical capacity

Logistics Engineering Design Constants

7. TL Revenue per Loaded Truck-Mile: \$2/mi in 2004 (r)

- TL revenue for the carrier is your TL cost as a shipper

15%, average deadhead travel
\$1.60, cost per mile in 2004
$\frac{\$ 1.60}{1-0.15}=\$ 1.88, \quad$ cost per loaded-mile
6.35\%, average operating margin for trucking
$\frac{\$ 1.88}{1-0.0635} \approx \$ 2.00$, revenue per loaded-mile

One-Time vs Periodic Shipments

- One-Time Shipments (operational decision): know shipment size q
- Know when and how much to ship, need to determine if TL and/or LTL to be used
- Must contact carrier or have agreement to know charge
- Can/should estimate charge before contacting carrier
- Periodic Shipments (tactical decision): know demand rate f, must determine size q
- Need to determine how often and how much to ship
- Analytical transport charge formula allow "optimal" size (and shipment frequency) to be estimated
- U.S. Bureau of Labor Statistic's Producer Price Index (PPI) for TL and LTL used to estimate transport charges

Truck Shipment Example

- Product shipped in cartons from Raleigh, NC (27606) to Gainesville, FL (32606)
- Each identical unit weighs 40 lb and occupies $9 \mathrm{ft}^{3}$ (its cube)
- Don't know linear dimensions of each unit for TL and LTL
- Units can be stacked on top of each other in a trailer
- Additional info/data is presented only when it is needed to determine answer

Truck Shipment Example: One-Time

1. Assuming that the product is to be shipped P2P TL, what is the maximum payload for each trailer used for the shipment?

$$
\begin{aligned}
q_{\max }^{w t} & =K_{w t}=25 \mathrm{ton} \\
K_{c u} & =2750 \mathrm{ft}^{3} \\
s & =\frac{40 \mathrm{lb} / \mathrm{unit}}{9 \mathrm{ft}^{3} / \mathrm{unit}}=4.4444 \mathrm{lb} / \mathrm{ft}^{3} \\
K_{c u} & =\frac{q_{\max }^{c u}}{\left(\frac{s}{2000}\right)} \Rightarrow q_{\max }^{c u}=\frac{s K_{c u}}{2000} \\
q_{\max } & =\min \left\{q_{\max }^{w t}, q_{\max }^{c u}\right\}=\min \left\{K_{w t}, \frac{s K_{c u}}{2000}\right\} \\
& =\min \left\{25, \frac{4.4444(2750)}{2000}\right\}=6.1111 \mathrm{ton}
\end{aligned}
$$

Truck Shipment Example: One-Time

2. On Jan 10, 2018, 320 units of the product were shipped. How many truckloads were required for this shipment?

$$
q=320 \frac{40}{2000}=6.4 \text { ton, }\left\lceil\frac{q}{q_{\max }}\right\rceil=\left\lceil\frac{6.4}{6.1111}\right\rceil=2 \text { truckloads }
$$

3. Before contacting the carrier (and using Jan 2018 PPI), what is the estimated TL transport charge for this shipment?

$$
\begin{aligned}
d & =532 \mathrm{mi} \\
r_{T L} & =\frac{P P I_{T L}^{\mathrm{Jan} 2018}}{P P I_{T L}^{2004}} \times r_{2004}=\frac{P P I_{T L}}{102.7} \times \$ 2.00 / \mathrm{mi} \\
& =\frac{131.0}{102.7} \times \$ 2.00 / \mathrm{mi}=\$ 2.5511 / \mathrm{mi} \\
c_{T L} & =\left\lceil\frac{q}{q_{\max }}\right\rceil r_{T L} d=\left\lceil\frac{6.4}{6.1111}\right\rceil(2.5511)(532)=\$ 2,714.39
\end{aligned}
$$

Truck Shipment Example: One-Time

(ㅇ) UNITED STATES DEPARTMENT OF LABOR
正 Bureau of Labor Statistics

Databases, Tables \& Calculators by Subject

Change Output Options:
From: $\quad 2008 \mathbf{~ V} \quad$ To: $2018 \mathbf{~ V}$ \square include graphs \square include annual averages

Data extracted on: September 5, 2018 (4:22:19 PM)

PPI Industry Data

Series Id: PCU484121484121
Series Title: PPI industry data for General freight trucking, long-distance TL, not seasonally adjusted Industry: Product:
Base Date General freight trucking, long-distance TL General freight trucking, long-distance TL 200312

Download: \mathbb{X}.xlsx

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2008	116.0	115.9	116.5	117.8	120.5	123.0	124.0	124.0	121.8	121.3	117.8	115.1
2009	113.2	112.1	110.4	109.7	109.8	110.1	111.4	111.0	111.7	110.8	111.5	110.9
2010	110.8	111.0	111.9	112.2	113.2	113.5	113.4	113.7	113.8	114.4	115.8	116.1
2011	116.5	117.4	119.3	121.0	121.7	121.4	121.3	121.2	122.0	122.0	123.2	123.3
2012	124.0	124.6	126.2	126.7	127.0	125.8	125.6	126.8	127.4	127.2	126.9	127.0
2013	126.7	127.2	128.0	127.5	127.8	127.6	127.6	127.6	127.1	127.2	127.6	127.4
2014	127.9	128.2	128.7	129.5	130.6	130.8	130.3	130.4	130.4	129.7	129.8	128.9
2015	126.7	126.0	126.0	126.2	126.3	127.1	126.9	126.2	125.9	125.5	125.8	124.8
2016	124.6	123.4	123.2	123.6	122.8	122.7	123.0	123.0	123.3	124.1	124.1	124.2
2017	124.4	124.7	124.2	124.3	124.0	124.2	124.2	125.9	126.6	126.6	128.5	130.3
1818	131.0	132.0	132.	2.6(P)	3.6(P)	5,9(38.6(P)					

[^0]
Truck Shipment Example: One-Time

4. Using the Jan 2018 PPI LTL rate estimate, what was the transport charge to ship the fractional portion of the shipment LTL (i.e., the last partially full truckload portion)?

$$
\begin{aligned}
& q_{\text {frac }}=q-q_{\max }=6.4-6.1111=0.2889 \text { ton } \\
& r_{L T L}=P P I_{L T L}\left[\frac{s^{2}}{8}+14\right. \\
&\left(q_{\text {frac }}^{\frac{1}{7}} d^{\frac{15}{29}}-\frac{7}{2}\right)\left(s^{2}+2 s+14\right) \\
&=177.4\left[\frac{4.44^{2}}{8}+14\right. \\
&\left(0.2889^{\frac{1}{7}} 532^{\frac{15}{29}}-\frac{7}{2}\right)\left(4.44^{2}+2(4.44)+14\right) \\
& c_{L T L}=r_{L T L} q_{\text {frac }} d=3.8014(0.2889)(532)=\$ 584.23
\end{aligned}
$$

Truck Shipment Example: One-Time

5. What is the change in total charge associated with the combining TL and LTL as compared to just using TL?

$$
\begin{aligned}
\Delta c & =c_{T L}-\left(c_{T L-1}+c_{L T L}\right) \\
& =\left[\frac{q}{q_{\max }}\right] r_{T L} d-\left(\left\lfloor\frac{q}{q_{\max }}\right\rfloor r_{T L} d+r_{L T L} q_{\mathrm{frac}} d\right) \\
& =\$ 772.96
\end{aligned}
$$

Truck Shipment Example: One-Time

6. What would the fractional portion have to be so that the TL and LTL charges are equal?

$$
\begin{aligned}
c_{T L}(q) & =\left[\frac{q}{q_{\max }}\right] r_{T L} d \\
r_{L T L}(q) & =P P I_{L T L}\left[\frac{\frac{s^{2}}{8}+14}{\left(q^{\frac{1}{7}} d^{\frac{15}{29}}-\frac{7}{2}\right)\left(s^{2}+2 s+14\right)}\right] \\
c_{L T L}(q) & =r_{L T L}(q) q d \\
q_{I} & =\arg \min _{q}\left(\left\|c_{T L}(q)-c_{L T L}(q)\right\|\right) \\
& =0.7960 \text { ton }
\end{aligned}
$$

Truck Shipment Example: One-Time

7. What are the TL and LTL minimum charges?

$$
\begin{aligned}
& M C_{T L}=\left(\frac{r_{T L}}{2}\right) 45=\$ 57.40 \\
& M C_{L T L}=\left(\frac{P P I_{L T L}}{104.2}\right)\left(45+\frac{d^{\frac{28}{19}}}{1625}\right) \\
& =\left(\frac{177.4}{104.2}\right)\left(45+\frac{532^{\frac{28}{19}}}{1625}\right)=\$ 87.51
\end{aligned}
$$

- Why do these charges not depend on the size of the shipment?
- Why does only the LTL minimum charge depend of the distance of the shipment?

Truck Shipment Example: One-Time

- Independent Transport Charge (\$):

$$
c_{0}(q)=\min \left\{\max \left\{c_{T L}(q), M C_{T L}\right\}, \max \left\{c_{L T L}(q), M C_{L T L}\right\}\right\}
$$

Truck Shipment Example: One-Time

- PX: Package Express
- (Undiscounted) charge $c_{P X}$ based rate tables, R, for each service (2day ground, overnight, etc.)
- Rate determined by on chargeable weight, $w t_{\text {chrg }}$, and zone
- All PX carriers (FedEX, UPS, USPS, DHL) use dimensional weight, $w t_{\text {dim }} \quad l, w, d=$ length, width, depth (in)
$-w t_{\text {dim }}>150 \mathrm{lb}$ is prorated per-lb rate
- Actual weight 1-70 lb (UPS, FedEx home), 1-150 lb (FedEx commercial)
- Carrier sets a shipping factor, which is min cubic volume per pound

$$
\begin{align*}
c_{P X} & =R\left(w t_{\mathrm{chrg}}, z o n e\right) \\
w t_{\mathrm{chrg}} & =\left\lceil\max \left\{w t_{\mathrm{act}}, w t_{\mathrm{dim}}\right\}\right\rceil \tag{lb}
\end{align*}
$$

$w t_{\mathrm{dim}}=\frac{l \times w \times d\left(\mathrm{in}^{3}\right)}{s f\left(\mathrm{in}^{3} / \mathrm{lb}\right)}(\mathrm{lb})$

$$
s f=\text { shipping factor }\left(\mathrm{in}^{3} / \mathrm{lb}\right)
$$

$$
=12^{3} / \mathrm{s}, \text { inverse of density }
$$

- Zone usually determined by O-D delivery, excess declared value, etc.

$$
=139 \text { FedEx (2019) }
$$ distance of shipment

- Supplemental charges for home
$w t_{\text {act }}=$ actual weight $(1$ to 150 lb$)$

$$
l \geq w, \quad l \times w \times d \geq \text { actual cube }
$$

$$
\Rightarrow s=12.43 \mathrm{lb} / \mathrm{ft}^{3}(\text { Class } 85)
$$

$$
=194 \mathrm{USPS} \Rightarrow s=8.9 \mathrm{lb} / \mathrm{ft}^{3}
$$

Truck Shipment Example: One-Time

- (Undisc.) charge to ship a single carton via FedEx?

$$
\begin{aligned}
w t_{\mathrm{act}} & =40 \mathrm{lb}, c u=9 \mathrm{ft}^{3} \\
d & =532 \mathrm{mi} \Rightarrow \text { zone }=4
\end{aligned}
$$

carton $\Rightarrow l \times w \times d=$ actual cube \Rightarrow $l \times w \times d=9 \times 12^{3}=15,552 \mathrm{in}^{3}=32 \times 27 \times 18$

$$
w t_{\mathrm{dim}}=\frac{l \times w \times d}{s f}=\frac{15,552}{139}=111.9 \mathrm{lb}
$$

$$
w t_{\mathrm{chrg}}=\left\lceil\max \left\{w t_{\mathrm{act}}, w t_{\mathrm{dim}}\right\}\right\rceil
$$

$$
=\lceil\max \{40,111.9\}\rceil=112 \mathrm{lb}
$$

$$
c_{P X}=R\left(w t_{\mathrm{chrg}}, z o n e\right)
$$

$$
=R(112,4)=\$ 64.27
$$

FedEx Standard List Rates (eff. Jan. 7, 2019)

Service	FedEx Ground ${ }^{\text {a }}$ and FedEx Home Delivery ${ }^{\text {® }}$ (up to 70 lbs)						
Delivery Commitment	1-5 days based on distance to destination						
Zones ${ }^{1}$	2	3	4	5	6	7	8
	$\begin{gathered} \hline \text { 0-150 } \\ \text { miles } \end{gathered}$	$\begin{gathered} \text { 151-300 } \\ \text { miles } \end{gathered}$	$\begin{array}{\|c} \begin{array}{c} 301-600 \\ \text { miles } \end{array} \\ \hline \end{array}$	$\begin{gathered} 601-1,000 \\ \text { miles } \end{gathered}$	$\begin{array}{\|c\|} \hline 1,001-1,400 \\ \text { miles } \end{array}$	$\begin{array}{\|c\|} \hline 1,401-1,800 \\ \text { miles } \\ \hline \end{array}$	$\begin{gathered} \text { 1.801-plus } \\ \text { miles } \end{gathered}$
5 1 lb .	S 7.85	S 8.23	\$ 8.96	\$ 9.36	\$ 9.68	\$ 9.80	\$ 9.96
3 2 lbs.	+ +5	9.48	10.15	10.37	10.82	11.24	11.43
$\begin{array}{ll} \underline{E} & 3 \\ \underset{\underline{E}}{ } \end{array}$			10.70	11.14	11.59	11.98	12.57
膏 4	9.13			11.75	12.08	12.87	13.47
5 5	9.37	Note: No Zone 1 (usually < 50 mi local)				$\xrightarrow{13.46}$	14.22
者 6	9.68					13.81	14.48
$\begin{array}{ll} \overline{\bar{x}} \\ \sum_{\mathrm{x}} & 7 \end{array}$	10.23) 14.18	15.18
≥ 8	10.43					14.61	15.69
9	10.59	11.40	12.48	13.39	14.04	15.21	16.52
10	10.84	11.51	12.60	13.76	14.33	16.10	17.62
111	59.41	59.89	64.26	67.20	75.20	82.60	92.25
112	60.62	61.13	64.27	67.21	75.84	83.31	92.36
113	60.68	61.18	64.98	67.83	76.52	84.00	94.04
114	61.32	62.45	66.33	69.15	77.81	85.41	94.65
115	61.99	63.16	66.34	69.33	77.82	85.42	94.66
146	82.51	84.98	88.95	89.15	98.04	105.96	118.85
147	83.66	85.00	89.66	89.86	98.74	106.69	119.66
148	84.68	85.63	90.61	90.62	100.20	107.40	120.46
149	84.84	86.38	91.26	91.28	100.42	108.08	121.81
150^{2}	84.85	87.16	92.76	94.33	100.95	108.83	122.60

[^0]: P: Preliminary. All indexes are subject to revision four months after original publication.

