Project Justification

- If cash flows are uniform, can use simple formulas; otherwise, need to use spreadsheet to discount each period's cash flows
- In practice, the payback period is used to evaluate most small projects:

$$
\text { Payback period }=\frac{I V_{0}}{O P}, \quad \text { for } O P>0
$$

where

$$
\left.\begin{array}{rl}
I V_{0} & =I V_{\text {new }}-S V_{\text {current }}, \quad \text { net intital investment expenditure at time } 0 \text { for project } \\
I V_{\text {new }} & =\text { initial investment cost at time } 0 \text { for (new) project }
\end{array}\right\} \begin{aligned}
S V_{\text {current }} & =\text { salvage value of current project (if any) at time } 0 \\
O P & = \begin{cases}O R-O C, & \text { uniform operating profit per period from project } \\
O C_{\text {current }}-O C_{\text {new }}, & \text { net uniform operating cost savings per period }\end{cases} \\
O R & =\text { uniform operating revenue per period from project } \\
O C & =\text { uniform operating cost per period of project }
\end{aligned}
$$

Discounting

- NPV and NAV equivalent methods for evaluating projects
- Project accepted if NPV ≥ 0 or $N A V \geq 0$

Weighted Average Cost of Capital: $i=(\% \mathrm{debt}) i_{\text {debt }}+(\%$ equity $) i_{\text {equity }}$

$$
=(0.5) 0.06+(0.5) 0.30=0.18
$$

$$
N P V=P V \text { of } O P-I V^{\mathrm{eff}}
$$

Net Present Value:

$$
=O P\left[\frac{1-(1+i)^{-N}}{i}\right]-I V^{\mathrm{eff}}, \quad i \neq 0
$$

Net Annual (Periodic) Value: $N A V=O P-K$

Project with Uniform Cash Flows

(a) Actual cash flows.
(b) Payback method.

(c) Net present value (NPV).

Cost Reduction Example

Common				
Cost of Capital	(i)	8%15500,000	8\%	
Economic Life	(N, yr)		15	
Annual Demand	(q / yr)		500,000	
Sale Price	(\$/q)			
Project		Current	New	Net
Investment Cost	(IV, \$)	2,000,000	5,000,000	3,000,000
Salvage Percentage		25\%	25\%	
Salvage Value	(SV, \$)	500,000	1,250,000	750,000
Eff. Investment Cost	(IV ${ }^{\text {eff }}, \$$)	1,842,379	4,605,948	2,763,569
Cost Cap Recovery	($K, \$ / \mathrm{yr}$)	215,244	538,111	322,866
Oper Cost per Unit	(\$/q)	1.25	0.50	(0.75)
Operating Cost	(OC, \$/yr)	625,000	250,000	$(375,000)$
Operating Revenue	(OR, \$/yr)	0	0	0
Operating Profit (OR - OC)	(OP, \$/yr)	$(625,000)$	$(250,000)$	375,000
Analysis				
Payback Period (IV/OP)	(yr)			8.00
PV of $O P$	(\$)	$(5,349,674)$	$(2,139,870)$	3,209,805
$N P V\left(P V\right.$ of $O P-I V^{\text {eff }}$)	(\$)	$(7,192,053)$	$(6,745,818)$	446,236
NAV (OP - K)	(\$/yr)	$(840,244)$	$(788,111)$	52,134
Average Cost ($(K+O C) / q)$	(\$/q)	1.68	1.58	

(Linear) Break-Even and Cost Indifference Pts.

$$
\text { Break-Even Point: } \quad q_{B}=\frac{F}{P-V}
$$

$$
\text { Cost Indifference Point: } q_{I 1 \& 2}=\frac{F_{1}-F_{2}}{V_{2}-V_{1}}
$$

If output q is in units produced, then $F=K$ and $V=\frac{O C}{q}$.

