Dedicated Storage Assignment (DSAP)

- The assignment of items to slots is termed slotting
- With randomized storage, all items are assigned to all slots
- DSAP (dedicated storage assignment problem):
- Assign N items to slots to minimize total cost of material flow
- DSAP solution procedure:

1. Order Slots: Compute the expected cost for each slot and then put into nondecreasing order
2. Order Items: Put the flow density (flow per unit of volume, the reciprocal of which is the "cube per order index" or COI) for each item i into nonincreasing order

$$
\frac{f_{[1]}}{M_{[1]} S_{[1]}} \geq \frac{f_{[2]}}{M_{[2]} S_{[2]}} \geq \cdots \geq \frac{f_{[N]}}{M_{[N]} s_{[N]}}
$$

3. Assign Items to Slots: For $i=1, \ldots, N$, assign item $[i]$ to the first slots with a total volume of at least $M_{[i j} S_{[i]}$

1-D Slotting Example

		A	B	C
Max units	M	4	5	3
Space/unit	s	1	1	1
Flow	f	24	7	21
Flow Density	$\mathrm{f} /(\mathrm{M}$ x s)	6.00	1.40	7.00

1-D Slotting Example (cont)

		Dedicated			Random	Class-Based		
		A	B	C	ABC	AB	AC	BC
Max units	M	4	5	3	9	7	7	8
Space/unit	S	1	1	1	1	1	1	1
Flow	f	24	7	21	52	31	45	28
Flow Density	$\mathrm{f} /(\mathrm{M}$ s $)$	6.00	1.40	7.00	5.78	4.43	6.43	3.50

1-D Slot Assignments														Total Distance	Total Space
Dedicated (flow density)		c	c	c	A	A	A	A	в	в	B	B	в	436	12
Dedicated (flow only)		A	A	A	A	c	c	c	в	в	в	в	в	460	12
Class-based		c	c	c	AB			466	10						
Randomized		ABC				468	9								

2-D Slotting Example

8	7	6	5	4	5	6	7	8
7	6	5	4	3	4	5	6	7
6	5	4	3	2	3	4	5	6
5	4	3	2	1	2	3	4	5
4	3	2	1	0	1	2	3	4

Distance from I/O to Slot

Optimal Assignment (TD = 177)

DSAP Assumptions

1. All SC S/R moves

2. For item i, probability of move to/from each slot assigned to item is the same
3. The factoring assumption:
a. Handling cost and distances (or times) for each slot are identical for all items
b. Percent of S / R moves of item stored at slot j to/from I/O port k is identical for all items

- Depending of which assumptions not valid, can determine assignment using other procedures

$$
\left[\left(\frac{f_{i}}{M_{i}} \cdot d_{j}\right) x_{i j}\right] D S A P \subset \underset{\left(c_{i j} x_{i j}\right)}{L A P} \subset L P \subset \underset{T S P}{Q A P}\left(c_{i j k} x_{i j} x_{k l}\right)
$$

Example 5: 1-D DSAP

- What is the change in the minimum expected total distance traveled if dedicated, as compared to randomized, block stacking is used, where
a. Slots located on one side of 10 -foot-wide down aisle
b. All single-command S / R operations
c. Each lane is three-deep, four-high
d. 40×36 in. two-way pallet used for all loads
e. Max inventory levels of SKUs A, B, C are 94, 64, and 50
f. Inventory levels are uncorrelated and retrievals occur at a constant rate
g. Throughput requirements of A, B, C are 160, 140, 130
h. Single I/O port is located at the end of the aisle

Example 5: 1-D DSAP

- Randomized:

$$
\begin{aligned}
M & \left.=\left\lvert\, \frac{M_{A}+M_{B}+M_{C}}{2}+\frac{1}{2}\right.\right\rfloor=\left\lfloor\frac{94+64+50}{2}+\frac{1}{2}\right\rfloor=104 \\
L_{\text {rand }} & =\left\lceil\left.\frac{M+N H\left(\frac{D-1}{2}\right)+N\left(\frac{H-1}{2}\right)}{D H} \right\rvert\,\right. \\
& =\left\lceil\left.\frac{104+3(4)\left(\frac{3-1}{2}\right)+N\left(\frac{4-1}{2}\right)}{3(4)} \right\rvert\,=11\right. \text { lanes } \\
X & =x L_{\text {rand }}=3(11)=33 \mathrm{ft} \\
d_{S C} & =X=33 \mathrm{ft}
\end{aligned}
$$

$$
T D_{\text {rand }}=\left(f_{A}+f_{B}+f_{C}\right) X=(160+140+130) 33=14,190 \mathrm{ft}
$$

Example 5: 1-D DSAP

- Dedicated:

$$
\begin{aligned}
\frac{f_{A}}{M_{A}} & =\frac{160}{94}=1.7, \frac{f_{B}}{M_{B}}=\frac{140}{64}=2.19, \frac{f_{C}}{M_{C}}=\frac{130}{50}=2.6 \Rightarrow C>B>A \\
L_{A} & =\left\lceil\frac{M_{A}}{D H}\right\rceil=\left\lceil\frac{94}{3(4)}\right\rceil=8, L_{B}=\left\lceil\frac{M_{B}}{D H}\right\rceil=\left\lceil\frac{64}{3(4)}\right\rceil=6, L_{C}=\left\lceil\frac{M_{C}}{D H}\right\rceil=\left\lceil\frac{50}{3(4)}\right\rceil=5 \\
X_{C} & =x L_{C}=3(5)=15, X_{B}=x L_{B}=3(6)=18, X_{A}=x L_{A}=3(8)=24 \\
d_{S C}^{C} & =X_{C}=3(5)=15 \mathrm{ft} \\
d_{S C}^{B} & =2\left(X_{C}\right)+X_{B}=2(15)+18=48 \mathrm{ft} \\
d_{S C}^{A} & =2\left(X_{C}+X_{B}\right)+X_{A}=2(15+18)+24=90 \mathrm{ft} \\
T D_{d e d} & =f_{A} d_{S C}^{A}+f_{B} d_{S C}^{B}+f_{C} d_{S C}^{C}=160(90)+140(48)+130(15)=23,070 \mathrm{ft}
\end{aligned}
$$

