Warehouse Operations

Warehouse Management System

• WMS interfaces with a corporation's enterprise resource planning (ERP) and the control software of each MHS

• Advance shipping notice (ASN) is a standard format used for communications

Logistics-related Codes

	Commodity Code	Item Code	Unit Code
Level	Category	Class	Instance
Description	Grouping of similar objects	Grouping of identical objects	Unique physical object
Function	Product classification	Inventory control	Object tracking
Names	—	Item number, Part number, SKU, SKU + Lot number	Serial number, License plate
Codes	UNSPSC, GPC	GTIN, UPC, ISBN, NDC	EPC, SSCC

- UNSPSC: United Nations Standard Products and Services Code
 - GPC: Global Product Catalogue
 - GTIN: Global Trade Item Number (includes UPC, ISBN, and NDC)
 - UPC: Universal Product Code
 - ISBN: International Standard Book Numbering
 - NDC: National Drug Code
 - EPC: Electronic Product Code (globally unique serial number for physical objects identified using RFID tags)
 - SSCC: Serial Shipping Container Code (globally unique serial number for identifying *movable units* (carton, pallet, trailer, etc.))

Identifying Storage Locations

Receiving

- Basic steps:
- 1. Unload material from trailer.
- 2. Identify supplier with ASN, and associate material with each moveable unit listed in ASN.
- 3. Assign inventory attributes to movable unit from item master file, possibly including repackaging and assigning new serial number.
- 4. Inspect material, possibly including holding some or all of the material for testing, and report any variances.
- 5. Stage units in preparation for putaway.
- 6. Update item balance in inventory master and assign units to a receiving area in location master.
- 7. Create receipt confirmation record.
- 8. Add units to putaway queue

Putaway

Receive Putaway Reserve Storage Replenish Forward Pick Order Pick Sort & Pack Ship

- A putaway algorithm is used in WMS to search for and validate locations where each movable unit in the putaway queue can be stored
- Inventory and location attributes used in the algorithm:
 - *Environment* (refrigerated, caged area, etc.)
 - Container type (pallet, case, or piece)
 - Product processing type (e.g., floor, conveyable, nonconveyable)
 - Velocity (assign to A, B, C based on throughput of item)
 - Preferred putaway zone (item should be stored in same zone as related items in order to improve picking efficiency)

Replenishment

Receive Putaway Reserve Storage Replenish Forward Pick Order Pick Sort & Ship

- Replenishment is the process of moving material from reserve storage to a forward picking area so that it is available to fill customer orders efficiently
- Other types of in-plant moves include:
 - Consolidation: combining several partially filled storage locations of an item into a single location
 - Rewarehousing: moving items to different storage locations to improve handling efficiency

Reserve Storage Area

Order Picking

Receive Putaway Reserve Storage Replenish Forward Pick Pick Sort & Pack Ship

Order picking is at the intersection of warehousing and order processing

Order Picking

Voice-Directed Piece and Case Picking

Pick-to-Light Piece Picking

Order Picking

Methods of Order Picking

Batch

Zone-Batch

Sortation and Packing

Shipping

Receive Putaway Reserve Storage Replenish Forward Pick Order Pick Sort & Pack Ship

- Staging, verifying, and loading orders to be transported
 - ASN for each order sent to the customer
 - Customer-specific shipping instructions retrieved from customer master file
 - Carrier selection is made using the rate schedules contained in the carrier master file

Activity Profiling

- *Total Lines*: total number of lines for all items in all orders
- Lines per Order: average number of different items (lines/SKUs) in order
- *Cube per Order*: average total cubic volume of all units (pieces) in order
- *Flow per Item*: total number of S/R operations performed for item
- Lines per Item (popularity): total number of lines for item in all orders
- *Cube Movement*: total unit demand of item time x cubic volume
- *Demand Correlation*: percent of orders in which both items appear

Item Master

SKU	Length	Width	Depth	Cube	Weight
A	5	3	2	30	1.25
В	3	2	4	24	4.75
С	8	6	5	180	9.65
D	4	4	3	32	6.35
E	6	4	5	120	8.20

Lines per Order = 11/5 = 2.2

Cube per Order = 493.2

	Flow per	Lines per	Cube
SKU	Item	Item	Movement
Α	11	3	330
В	5	2	120
С	4	3	720
D	18	2	576
E	6	1	720

[Demand Correlation Distibution					
SKU	SKU A B C D E					
Α		0.2	0.4	0.2	0.0	
В			0.2	0.2	0.0	
С				0.4	0.2	
D					0.2	
E						

Pallet Picking Equipment

Case Picking

Piece Picking Equipment

Methods of Piece Picking

Wave Zone-Batch Piece Picking

Warehouse Automation

- Historically, warehouse automation has been a craft industry, resulting highly customized, one-off, high-cost solutions
- To survive, need to
 - adapt mass-market, consumer-oriented technologies in order to realize to economies of scale
 - replace mechanical complexity with software complexity
- How much can be spent for automated equipment to replace one material handler:

$$\$45,432\left(\frac{1-1.017^{-5}}{0.017}\right) = \$45,432(4.75) = \$216,019$$

- \$45,432: median moving machine operator annual wage + benefits
- 1.7% average real interest rate 2005-2009 (real = nominal inflation)
- 5-year service life with no salvage (service life for Custom Software)

KIVA Mobile-Robotic Fulfillment System

- Goods-to-man order picking and fulfillment system
- Multi-agent-based control
 - Developed by Peter Wurman, former NCSU CSC professor
- Kiva now called Amazon Robotics
 - purchased by Amazon in 2012 for \$775 million

