Public WH Design (Problem 24)

(b) $A C_{\Phi / \text { lot-yr }}=\frac{K_{S / \mathrm{yr}}}{M_{\text {slot }}}$

Demand assumed uncorrelated since it belongs to different customers \Rightarrow

$$
\begin{aligned}
M & =\left\lfloor\sum_{i=1}^{N}\left(\frac{M_{i}-S S_{i}}{2}+S S_{i}\right)+\frac{1}{2}\right\rfloor \\
& =\left\lfloor 4,800\left(\frac{250-0.06(250)}{2}+15\right)+\frac{1}{2}\right\rfloor=636,000 \text { slots } \\
I V_{0, \text { bldg }} & =S V_{N, \text { bldg }} \Rightarrow K_{S / y \mathrm{r}}=i I V_{0, \text { bldg }}=0.05 I V_{0, \text { bldg }} \\
I V_{0, \text { bldg }} & =\$ 15.50 T A^{\prime} \Rightarrow T A^{\prime}=1.15 T A \Rightarrow \\
T A(D) & =x L(D) \cdot\left(y D+\frac{A}{2}\right)=\frac{42}{12} L(D) \cdot\left(\frac{40}{12} D+\frac{7}{2}\right) \Rightarrow
\end{aligned}
$$

Public WH Design (Problem 24)

(b, cont)

$$
\begin{aligned}
L(D) & =\left\lceil\frac{M+N H\left(\frac{D-1}{2}\right)+N\left(\frac{H-1}{2}\right)}{D H}\right] \\
& =\left\lceil\frac{636,000+4800 H\left(\frac{D-1}{2}\right)+4800\left(\frac{H-1}{2}\right)}{D H}\right] \Rightarrow \\
H & =\left\lfloor\frac{18}{z}\right\rfloor=\left\lfloor\frac{18}{42 / 12}\right\rfloor=5 \quad \text { (building clear-height constraint) } \\
D & =D^{*}=\left\lfloor\sqrt{\frac{A(2 M-N)}{2 N y H}}+\frac{1}{2}\right\rfloor=\left\lfloor\sqrt{\frac{7(2(636,000)-4800)}{2(4800) \frac{40}{12}(5)}}+\frac{1}{2}\right\rfloor=7
\end{aligned}
$$

Public WH Design (Problem 24)

(b, cont)

$$
\begin{aligned}
& \Rightarrow L=20,503 \Rightarrow T A=1,925,573 \Rightarrow T A^{\prime}=2,214,409 \Rightarrow \\
& \Rightarrow I V_{0, \text { bldg }}=\$ 15.50 T A^{\prime}=\$ 15.50(2,214,409)=\$ 34,323,346 \\
& \Rightarrow K_{\$ / y \mathrm{rr}}=0.05 I V_{0, \mathrm{bldg}}=\$ 1,716,167 \Rightarrow \\
A C_{\$ / \text { slot-yr }} & =\frac{K_{\$ / y \mathrm{r}}}{M_{\text {slot }}}=\$ 2.70 \text { per slot-yr }
\end{aligned}
$$

Public WH Design (Problem 24)

(a, cont)

$$
\begin{aligned}
T A^{\prime} & =2,214,409 \mathrm{ft}^{2} \Rightarrow \\
d_{S C} & =\sqrt{2} \sqrt{T A^{\prime}}=\sqrt{2} \sqrt{2,214,409}=2,104 \Rightarrow \\
t_{\mathrm{min} / \mathrm{mov}} & =\frac{d_{S C}}{616}+2\left(\frac{35}{60}\right)=4.58 \\
H^{\prime} & =2(8) 5(50)=4000 \mathrm{hr} / \mathrm{yr} \quad \text { (already using } H) \\
r_{\text {peak }} & =1.25 \frac{f_{\mathrm{mov} / \mathrm{yr}}}{H^{\prime}}=1.25 \frac{2,000,000}{4000}=625 \mathrm{mov} / \mathrm{hr} \\
m_{\mathrm{tr}} & =\left\lfloor r_{a} t_{e}+1\right\rfloor=\left\lfloor r_{\text {peak }} t_{\mathrm{hr} / \mathrm{mov}}+1\right\rfloor=\left\lfloor 625 \frac{4.58}{60}+1\right\rfloor=48 \mathrm{tr} \\
I V^{\text {eff }} & =I V_{0}-S V(1+i)^{-N}=35,000-0.25(35,000)(1+0.05)^{-10} \\
& =\$ 29,628
\end{aligned}
$$

Public WH Design (Problem 24)

(a, cont)

$$
\begin{aligned}
K_{\mathrm{tr} / \mathrm{yr}} & =I V^{\text {eff }}\left[\frac{i}{1-(1+i)^{-N}}\right]=29,628\left[\frac{0.05}{1-(1+0.05)^{-10}}\right]=\$ 3,837 \\
c_{\$ \text { lab-yr }}^{\mathrm{lab}} & =15.00 H^{\prime}=\$ 60,000 \\
T C_{\$ \text { yr }} & =m_{\mathrm{tr}} K_{\$ / \mathrm{tr-yr}}+\left(m_{\mathrm{tr}}+12\right) c_{\$ / \mathrm{lab}-\mathrm{yr}}^{\mathrm{lab}}+2.75(2,000,000) \frac{t_{\mathrm{min} / \mathrm{mov}}}{60} \\
& =48(3,837)+(48+12) 60,000+2.75(2,000,000) \frac{4.58}{60} \\
& =\$ 4,204,286.27 \Rightarrow \\
A C_{\$ / \text { mov }} & =\frac{T C_{\S / y \mathrm{r}}}{f_{\mathrm{mov} / \mathrm{yr}}}=\frac{4,204,286.27}{2,000,000}=\$ 2.10 \text { per move }
\end{aligned}
$$

Public WH Design (Problem 24)

- (c) What are other costs that should be added to each charge to better reflect the true costs of each activity?
- most significant missing costs are the facility non-move-related operating costs, which should be added to the slot-year charge
- What about average unit cost of $\$ 46.75$?
- only possible impact of unit cost would be for any insurance coverage provided by the warehouse for items stored in the warehouse
- Note: Number of slots of max inventory, M, used to determine $A C_{\$ / \text { slot-yr }}$ instead of the total slots in warehouse since unused HCL slots would underestimate cost:

$$
\begin{array}{r}
\text { Total Slots }=L \times D \times H=717,605 \\
M=636,000 \\
H C L=81,605
\end{array}
$$

