Solutions:

1. To have an answer that is within an order of magnitude of the correct answer, or what is termed a zeroth-order approximation.
2. Multiple answers are possible depending on what is the objective. Locating at the two trip per day location minimizes the total distance traveled for the couple while locating one-third of the way between the two and one trip per day locations (the center of gravity) minimizes the weighted distance squared and results in a location that equalizes the travel for the couple.
3. Any two of the following: Transportation may not be the most important factor affecting location. Another criterion may be more important in determining the location; for example, minimizing the maximum distance (minimax). The location may not be feasible (e.g., cannot be located in the middle of a swamp).
4. Adv: Located in more convenient locations compared to when restaurants are owned by competing firms. Disadv: Higher prices.
5. Unless customers are forced to purchase from the facility being located, who actually pays for transport should be whoever can do it at the lowest cost, with transport cost factored into the purchase price.
6. Because it contains both integer variables (the binary variables indicating whether or not a NF is established at the site) and continuous variables (the fraction of EF demand serve from an NF at the site).
7. If the shipment cubes out instead of weighs out.
8. The unit of time over which demand is specified should have no impact on the results, which is only true if the fractional component is used (e.g., it should make no difference if you specify demand annually or weekly, but rounding weekly demand may result in zero demand for most weeks).
9. Adv: Minimizes transport cost. Allows monetary way to be determined independently of distance. Disadv: Increases cycle inventory cost, may not be feasible to store the entire truckload.
10. If there is perfect coordination between inbound and outbound shipment so that all product is crossdocked and none is put into permanent storage.
11. Because the cost of loading/unloading at each terminal, since the number of terminals visited increases with the distance of the shipment.
12. Because equal shipment size results is the same cycle inventory costs IC for both P2P TL and LTL.
13. A rate break is the shipment size at which the tariff rate changes, while a weight break is the point between two rate breaks at which it becomes cheaper to use the next, lower rate.

	dd		ss		((deg)	x (rad)	dd	mm	ss		y (deg)	y (rad)	d(rad)	d (mi)
Raleigh	78	39	32	W	-78.66	-1.372857	35	49	19	N	35.82194	0.625211		
Rio de Janeiro	43	12	0	W	-43.2	-0.753982	22	57	0	S	-22.95	-0.40055	1.181038	4679.089

.15. S07

	A	B	A\&B
Kwt	25	25	25 ton
Kcu	2750	2750	2750 cu ft
s	12	6	$7.5 \mathrm{lb} / \mathrm{ft3}$
d	500	500	500 mi
r	2	2	2 \$/mi
qmax	16.5	8.25	10.3125 ton
f	20	30	50 ton
v	3000	3000	3000 \$/ton
h	0.3	0.3	0.3
a	0.5	0.5	0.5
$\mathrm{q}^{*} \mathrm{TL}$	6.6666667	8.1649658	10.3125 ton
TLC $^{*} \mathrm{TL}$	6000	7348.4692	9489.11
			$13348.47 \mathrm{TLC} \mathrm{A+B}$

17. F08

18. F08

	A	B	A\&B	A+B					
Kwt	25	25	25	ton		Pct	f	$\mathrm{w}=\mathrm{nf}$	
Kcu	2750	2750	2750	cu ft	Asheville	0.15	72	5.018182	5.018182
S	3	30	10.43478	$\mathrm{lb} / \mathrm{tt} 3$	Statesville		100	24.24242	29.26061
qmax	4.125	25	14.34783	ton	Winston-Salem	0.2	96	6.690909	35.95152
f	100	380	480	ton	Greensboro				
					Durham	0.3	144	10.03636	45.98788
					Raleigh		380	15.2	61.18788
					Wilmington	0.35	168	11.70909	72.89697
						1	W=	72.89697	
							W/2=	36.44848	

Common	PPI_TL	111.9		Periodic	f	175 ton
	PPI_LTL	121.4			v	7500 \$/ton
	Kwt		ton		h	0.3
	Kcu	2750			a	0.5
	S		$\mathrm{lb} / \mathrm{ft}^{\wedge} 3$		q1wk	3.353867
	d	750	mi		TC_TL	85279.19
					IC_TL	3773.101
	r	2.179163	\$/mi		TLC1wk_TL	89052.29
	qmax	17.875	ton		TC_LTL	81170.92
	MC_TL	49.03116			IC_LTL	3773.101
	MC_LTL	64.79974			TLC1wk_LTL	84944.02

19.

