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1. Facility Location 

1.1 The Supply Chain 
Figure 1.1 shows a typical supply chain for a single plant. In the figure, items D and E provided 
by two different tier-two suppliers are shipped to a tier-one supplier where they are used to 
produce item B, units of which are then shipped to the plant. Similarly, items F and G are used to 
produce item C, which, along with B, are the two raw materials used to produce the finished 
good A. Units of A are shipped to distribution centers (DCs), from which they are delivered to 
the final customer. The number of units shown along each lane (or arc) in the figure is meant to 
indicate the typical size of each shipment; e.g., one of the reasons that a DC might be used is that 
it is cheaper to transport larger loads from the plant to the DC and then transport small loads to 
each customer as needed. 

1.1.1  Logistics Network Design 
The design of a logistics network involves determining how to supply products to customers at 
the least cost while providing the desired level of service. The level of service can include both 
the time required for delivery to the customer and the availability of the product. Given the 
location of available transshipment points (e.g., ports and DCs), the design problem includes 
issues like selecting the best mode of transportation between each point in the network, the 
frequency and quantity of each shipment, and the amount of each product to be stored at each 
DC. The total cost of transportation and inventory is used to guide the design, subject to service 
level requirements. Inventory costs are the sum of cycle, in-transit, and safety stock inventory. 
Generally, there is a trade-off between transportation and inventory costs; e.g., transportation 
costs are lower for truckload shipments as compared to less-than-truckload, but they can increase 
cycle inventory costs while product waits for a full truckload to accumulate. In some cases, the 
design problem includes the need to select the best location for some of the DCs in the network. 
When location decisions are part of the design, it may be necessary to include the cost of 
constructing and operating each DC as part of the total cost along with the cost of transportation 
and inventory. 
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Figure 1.1. Typical logistics network for a plant. 

As an example of a network design problem in the furniture industry, assume that a national 
furniture manufacturer has a large import program from suppliers in China. Currently, all 
products are shipped through the Panama Canal to a port on the East Coast and then trucked to a 
single DC. From there product is shipped to retail customers throughout the continental U.S. The 
manufacturer is considering whether a second DC should be opened at a predetermined location 
in California and used to receive product through the port of Long Beach. The second DC will 
decrease transportation costs from the DCs to the customers, but the sum of the inventory held 
both DCs will need to be greater because of loss of the opportunity at the single DC to pool 
safety stock inventory. Also, transport costs from China to Long Beach will be lower than the 
costs to the East Coast, but it may require than full container loads of low-volume products be 
shipped to each DC as compared to single container loads to the single DC, thereby doubling the 
cycle inventory levels of these products. Given all these factors, a network design decision can 
be made by determining the change in total logistics costs (transportation plus inventory costs) 
associated with opening the second DC. 
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Figure 1.2. Types of location problems. 

1.1.2  Location Problems 
A taxonomy of the different types of location problems is shown in Figure 1.2. Cooperative 
location decisions are used to minimize the total system costs of multiple facilities owned by a 
single firm instead just minimizing the cost of each of the firm's individual facilities. These 
decisions are possible when the impact of the location of other firms’ facilities does not 
significantly impact the location of your facilities. Cooperative location problems that focus on 
optimizing something other than the sum of costs (e.g., minimizing the maximum cost) can be 
considered as “nonlinear” location problems because the location-related costs in these problems 
are not directly proportional to distance, as is the case in minisum problems. Competitive 
location decisions are used to minimize the cost of an individual facility with respect to other 
facilities owned by other firms. These decisions are required when the location of other firms’ 
facilities does impact the location of your facilities, and may result in sub-optimal decisions as 
compared to cooperative location decisions (cf. Hotelling’s law). In what follows, only transport-
oriented minisum location problems are considered because these problems are the ones that 
most benefit from a simple analysis using transport-cost minimization as the sole criterion, and 
the assumption that costs are directly proportional to distance is usually reasonable; local-input-
oriented location problem are typically solved using more complex multi-criteria-based 
approaches. 

1.1.3  Basic Production System 
As shown in Figure 1.3, a production system can be considered as a node (or facility) in a 
logistics network that converts raw materials procured from suppliers into finished goods that are 
distributed to customers. For most production systems, the material input to the system equals 
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the material output from the system. Raw materials are those inputs that are transported to the 
production facility; ubiquitous inputs (e.g., water) are those available at any location, so that they 
do not need to be transported. Finished products are those outputs transported from the facility; 
while scrap is the output that is disposed of locally (although some outputs termed “scrap” are 
sometimes transported long distances from the facility for disposal or rework). 

 

Figure 1.3. Basic production system. 

The bottom portion of Figure 1.3 illustrates two different shipping terms that describe when the 
transfer of title occurs when goods are transported from the seller to the buyer: FOB Origin and 
FOB Destination, where FOB stands for free on board.1 In most cases, the cost of transporting 
the goods is paid for by whoever is the owner of the goods during the transport. Referring to 
Figure 1.3, assuming that you represent the production system, the supplier (the seller) would 
pay for the transport of goods from the supplier’s location (the origin) to your (the buyer’s) 
facility (the destination) if the shipping terms were FOB Destination. 
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1.2 Single-Facility Minisum Location 
Assuming that local input costs are either the same at every location or are insignificant as 
compared to transport costs, the minisum transport-oriented single-facility location problem is to 
locate a new facility (NF) to minimize the sum of weighted distances between NF and m existing 
facilities EFi, i = 1, …, m: 

 
1 1

Min ( ) ( , ) ( , )
im m

i i i i i
i i

i

c

TC X w d X P q r d X P
w 

  


 (1.1) 

where 

 wi = monetary weight ($/mile) 

 qi = physical weight (tons) or  fi = physical weight rate (tons/year) 

 ri = transport rate ($/ton-mile) 

 d(X, Pi) = distance between NF at X and EFi at Pi (miles) 

 ci = unit cost ($/ton), used to determine qi after NF located (transportation problem) 

 X = location of new facility (NF) 

 Pi = location of existing facility i (EFi) 

 m = number of EFs 

If physical weight qi is used, then TC in (1.1) is in units of $; if, instead, the physical weight rate 
fi in units of tons per year is used, then TC is in units of $/year. 

1.2.1  Majority Theorem 
The Majority Theorem can be used to determine if one of the EFs has at least half of the total 
weight (i.e., a majority); if so, then the NF should be located at that EF in order to minimize TC: 

 Majority Theorem:    Locate NF at EFj if 
1

, where
2

m

j i
i

W
w W w



   (1.2) 

The theorem is true for all minisum problems with metric distances, and can used to as a first 
check before using other means of determining the optimal location for the NF. 

1.2.2  Weight-Gaining vs. Weight-Losing Activities 
The activity occurring at a NF is considered weight losing if the sum of the monetary weights 
from EFs supplying material to the NF exceeds the sum of the weights of the material sent from 
the NF to the EFs which it supplies; conversely, if the sum of the monetary weight into the NF is 
less than the sum of the weight out, then the activity is considered weight gaining.  In situations 
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where the NF is a distribution center (DC), it is common for the products to be weight gaining 
because, while the physical weight of the products into the DC is the same as the weight of the 
products out, more costly modes of transport are used for distribution as compared to 
procurement, resulting in higher monetary weights on the outbound side of the DC (and thus 
drawing the location of the DC to the market). 

1.2.3  Median Location 
Starting from the first EF, a median location is the first EF location at which the cumulative 
weight of the EFs up to that point is at least half of the total weight of all EFs (i.e., the EF 
location that splits the total weight into equal halves). The median location is the optimal NF 
location for all 1-D minisum problems and any 2-D rectilinear distance location problem. 

The following procedure can be used to determine the median location: 

Median location:  For each dimension x of X: 

 1. Order EFs so that 1 2 mx x x    

 2. Locate x-dimension of NF at the first EFj where 
1 1

, where
2

j m

i i
i i

W
w W w

 

    

If the cumulative weight at EFj exactly equals half of the total weight, then the optimal location 
along the x-dimension for the NF is any point between and including EFj and EF ( 1)j  . Note 
that the optimal location for the NF can be determined without knowing the actual distances 
between the EFs; all that is necessary is to be able to order the EFs along each dimension. 

For 2-D minisum problems other than rectilinear distance problems, then an iterative procedure 
must be used to optimize TC and thus determine the optimal location for a NF. 

 
Figure 1.4. Total cost curve for 2 EFs. 
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Figure 1.5. Total cost curve for 4 EFs. 

Derivation 

Figure 1.4 shows an example with two EFs. EF1 is located at x1 = 10 and has a weight of w1 = 5, 
while EF2 is located at x2 = 30 and has a weight of w2 = 3. The total cost of locating a single NF 
at x is the sum of the costs for each EF: 

 1 1 2 2
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, if 
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Figure 1.5 shows an example with four EFs, where only the total cost curve is shown. The slope 
of curve from – to x1 is 

 ,1
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m

i
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
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and the slope between xj and xj+1 is 
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    

Starting at x1, the minimum total cost corresponds to the point where the slope of the total cost 
curve switches from negative to positive (or zero); this is equivalent to finding the first j such 
that 

wi
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In Figure 1.5, W = 14 and W/2 = 7. Starting from either EF1 or EF4, the optimal solution is 
found at EF2, which corresponds to the location at which the median condition is first satisfied. 

1-D Example 

Problem: As shown in Figure 1.6, I-40 passes through Asheville, Statesville, Winston-Salem, 
Greensboro, Durham, Raleigh, and Wilmington. The number of road miles from the beginning of 
I-40 at the western border of North Carolina to each city is shown below its name. A company 
wants to build a facility along I-40 to serve customers located in these cities. If the weekly 
demand in truckloads of the customers in each city is 6, 4, 3, 2, 1, 3, and 5, respectively, 
determine where the facility should be located to minimize the distance traveled to serve the 
customers assuming that I-40 will be used for all travel. 

Solution: Since W = 24, the cumulative weights at the optimal location should equal or exceed 
W/2 = 12, which occurs at Winston-Salem. Note that (1) the same solution is found starting from 
either Asheville or Wilmington, and (2) the distance between cities is not used to determine the 
optimal location, just the relative ordering the cities along I-40. 
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Figure 1.6. 1-D minisum location example. 

2-D Example 

Problem: A new snack machine is to be located on the floor of a facility (see Figure 1.7). 
Workers from eight different departments will make 19, 53, 82, 42, 9, 8, 39, and 6 trips per shift 
to the machine. Assuming rectilinear distance is a reasonable approximation of the actual travel 
distance, what is the location for the snack machine that will minimize the total distance that the 
workers have to travel? 

Solution: A separate 1-D location problem can be solved for each dimension. Since W = 258, the 
cumulative weights at the optimal location should equal or exceed W/2 = 129. Along the bottom 
(x) dimension, the optimal location is at same x-location as departments 4 and 6, while along the 
left (y) dimension, the optimal location is anywhere between y-locations of departments 4 and 6. 
The optimal y-location is not a single point because the cumulative weight exactly equals 129, 
which corresponds to the total cost curve being flat between points 4 and 6. Note that the weights 
of departments at the same location are added together along each dimension. 
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Figure 1.7. 2-D rectilinear-distance minisum location example. 

1-D Example with Procurement and Distribution Costs 

Problem: A product will be produced at a single plant that will be located along I-40 to serve 
customers located in the cities shown in Figure 1.6, above. Two tons of raw materials from a 
supplier in Asheville and a half ton of a raw material from a supplier in Durham are used to 
produce each ton of finished product that is shipped to customers in Statesville, Winston-Salem, 
and Wilmington. The demand of these customers is 10, 20, and 30 tons per year, respectively, 
and it costs $0.33 per ton-mile to ship raw materials to the plant and $1.00 per ton-mile to ship 
finished goods from the plant to the customers. Determine where the plant should be located so 
that procurement and distribution costs (i.e., the transportation costs to and from the plant) are 
minimized. 

Solution: As shown in Figure 1.8, total customer demand is 60 tons per year, which translates 
into a demand of 120 tons per year based on a bill-of material (BOM) ratio of 2 for the supplier 
in Asheville and 30 tons per year based on a BOM of 0.5 for the supplier in Durham. The 
resulting monetary weights are used to determine that the plant should be located in Winston-
Salem. The plant is (monetary) weight gaining since in out50 60w w     , but the plant is 
physically weight losing since in out150 60f f     ; the difference is due the higher outbound 
transport rate. 
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Figure 1.8. 1-D example with procurement and distribution costs. 

1.3 Metric Distances 

1.3.1  lp Distances 
Given two points P1 = (x1, y1) and P2 = (x2, y2), a general metric distance function termed the lp 
distance or norm can be used to represent several of the most common distances used in practice. 
The function uses different values of the parameter p to represent these special cases: 

 General lp: 
1

1 2 1 2 1 2( , ) , 1
p p p

pd P P x x y y p        (1.3) 

 
( 1)

Rectilinear
p

: 1 1 2 1 2 1 2( , )d P P x x y y     (1.4) 

 
( 2)

Euclidean
p

:    2 2
2 1 2 1 2 1 2( , )d P P x x y y     (1.5) 

 
( )

Chebychev
p

:  1 2 1 2 1 2( , ) max ,d P P x x y y     (1.6) 

The above distances are defined for two-dimensional points, but they can be extended for points 
of any dimension. For 0 < p < 1, the lp distance is not defined since the triangle inequality does 
not hold; for 1 < p < 2, the lp distance lies between the rectilinear and the Euclidean distances; 
and for 2 < p < , the lp distance lies below the Euclidean distance and decreases as p increases. 

Proof of Chebychev Distance 

Without loss of generality, let P1 = (x, y), for x, y  0, and P2 = (0, 0). Then 1 2( , )d P P 

 max ,x y  and 1 2( , )pd P P 
1 pp px y   . 
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If x = y, then
1 1 1lim lim 2 lim 2

p pp p p p

p p p
x y x x x

  
              . 

If x < y, then      1 11
lim lim 1 lim 1 1

p pp p pp p p

p p p
x y x y y x y y y y

  
             

. 

A similar argument can be made if x > y.  
 

1.3.2  Great Circle (Geodesic) Distances 
Great circle, or geodesic, distances on the surface of a sphere (e.g., the earth (see Figure 1.9) 
correspond to the shortest distance between two points on the surface along the circle formed by 
the intersection of the surface and a plane passing through the center of the sphere (i.e., a “great 
circle”). The elevations of the points on the surface are usually ignored. 
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Figure 1.9. Longitude and latitude for points on the surface of the earth. 

The great circle distance (dGC) between points 1 and 2 on the surface of the earth, specified by 
their longitude (lon) and latitude (lat) angles (in radians), is as follows: 
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To convert between decimal degrees and radians: deg rad
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  
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Example 

Table 1.1 shows a spreadsheet that calculates the great circle distance from Raleigh, NC to 
Gainesville, FL, Baghdad, Iraq, and Rio de Janeiro, Brazil. There are typically slight differences 
in great circle distance calculations due to how accurately the radius of the earth, R, is 
determined.  

Table 1.1. Great Circle Distances from Raleigh 

 

Circuity Factor 

Since the great circle distance is usually less than the actual road (or rail) distance between any 
two locations, the great circle distance can be multiplied by a circuity factor k to approximate the 
actual road distance: 

 Actual road distance between P1 and P2 1 2( , )GCk d P P   

The circuity factor is the average ratio of the actual road distance between two points and the 
great circle distance between the two points. It can be used to increase the easy-to-determine 
great circle distance so that it approximates the harder-to-determine actual road distance. You 
can use the websites How far is it or Google Maps to determine the great circle distances and the 
latter to determine road distances. 

dd mm ss x (deg) x (rad) dd mm ss y (deg) y (rad) d(rad) d (mi)

Raleigh 78 39 32 W -78.659 -1.373 35 49 19 N 35.8219 0.6252

Gainesville 82 20 11 W -82.336 -1.437 29 40 27 N 29.6742 0.5179 0.12 475.0745
Baghdad 44 22 E 44.3667 0.7743 33 14 N 33.2333 0.58 1.62 6407.166

Rio de Janeiro 43 12 W -43.2 -0.754 22 57 S -22.95 -0.401 1.181 4679.089
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Circuity factors of 1.15 to 1.25 are typically used for long-distance (> 20 mile) approximations, 
while factors of 1.25 to 1.50 are typically used for short-distance road approximations and for 
rail networks because the networks are not as dense. A factor of 1.20 provides a reasonable long-
distance road approximation for the continental U.S. 

Derivation 

In Figure 1.10, a, b, and c are the sides of a spherical triangle and A, B, and C are the 
corresponding angles. The great circle distance between points 1 and 2 in radians (drad) 
corresponds to side c of the triangle. 

Given 

 2 1 1 290 , 90 ,a y b y C x x        

the formula for great circle distances can be derived using the spherical law of cosines for sides: 
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Figure 1.10. Great circle distance derivation. 

Solving for c: 

  1
2 1 2 1 1 2cos sin( )sin( ) cos( ) cos( ) cos( )radd c y y y y x x     

The above formula can result in round off error if the two points are located at exactly opposite 
sides of a sphere. Instead, the Haversine formula can be used:2\ 

 1 2 1 21 2 2
1 22sin min 1, sin cos( ) cos( )sin

2 2
rad

y y x x
d c y y

            
     

 

The Haversine formula does not need to be used if the great circle distance is being calculated by 
hand and the two points are known to not be on opposite sides of the sphere. 
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1.4 Multifacility Location 
In a multifacility location problem, the number of NFs to be located can either be specified or 
can be determined as part of the location procedure. When the number of NFs is specified, the 
allocation of EFs to NFs can either be given or determined as part of what is then termed a 
location–allocation problem. If the NF-to-EF allocations are given and there are no interactions 
between the NFs, then the multifacility problem reduces to a series of single-facility location 
problems. The location–allocation problem remains difficult even when there are no interactions 
between the NFs because of the need to determine the allocations. 

Determining the best retail warehouse locations is an example of a location–allocation problem, 
where the EFs are population centroids (e.g., ZIP codes). Table 1.2 lists the best locations for a 
given number of warehouses. It is assumed that the warehouses serve retail customers located 
throughout the continental U.S. in proportion to population. Trucks traveling at 400 miles per 
day are used for all transport. Only outbound transport costs are used in making the location 
decision; it is reasonable to ignore inbound transport as long as suppliers are located uniformly 
throughout the country so that the inbound transport costs to each warehouse is approximately 
the same at any location. As can be seen in the table, the best single warehouse location 
(Bloomington, Indiana) is not the best location as the number of warehouses increases, while the 
warehouse in Palmdale, California remains in the best west coast location until a second west 
coast warehouse in Tacoma, Washington is added as part of the five-warehouse solution. 

Table 1.2. Best Retail Warehouse Locations3 

Number of 
Locations 

Average Transit
Time (days) Warehouse Location 

1 2.20 Bloomington, IN   
2 1.48 Ashland, KY  Palmdale, CA   
3 1.29 Allentown, PA  Palmdale, CA  McKenzie, TN  
4 1.20 Edison, NJ  Palmdale; CA  Chicago, IL  
  Meridian, MS    
5 1.13 Madison, NJ  Palmdale, CA  Chicago, IL  
  Dallas, TX  Macon, GA   
6 1.08 Madison, NJ  Pasadena, CA  Chicago, IL  
  Dallas, TX  Macon, GA  Tacoma, WA  
7 1.07 Madison, NJ  Pasadena, CA  Chicago, IL  
  Dallas, TX  Gainesville, GA Tacoma, WA  
  Lakeland, FL    
8 1.05 Madison, NJ  Pasadena, CA  Chicago, IL  
  Dallas, TX  Gainesville, GA Tacoma, WA  
  Lakeland, FL  Denver, CO   
9 1.04 Madison, NJ  Alhambra, CA  Chicago, IL  
  Dallas, TX  Gainesville, GA Tacoma, WA  
  Lakeland. FL  Denver, CO  Oakland, CA  

10 1.04 Newark, NJ  Alhambra, CA  Rockford, IL  
  Palistine, TX  Gainesville, GA Tacoma, WA  
  Lakeland, FL  Denver, CO  Oakland. CA  
  Mansfield, OH    
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1.4.1  The Uncapacitated Facility Location Problem 
Given m EFs and n sites at which NFs can be established, the uncapacitated facility location 
(UFL) problem can be formulated as the following mixed-integer linear programming (MILP) 
problem: 

 
1 1 1

Min
n n m

i i ij ij
i i j

TC k y c x
  

    (1.7) 

subject to 

 
1

1
n

ij
i

x


 , 1, ,j m   (1.8) 

 i ijy x , 1, , ; 1, ,i n j m    (1.9) 

 0 1ijx  , 1, , ; 1, ,i n j m    (1.10) 

  0,1iy  , 1, ,i n  , (1.11) 

 

where 

 ki = fixed cost of establishing a NF at site i 

 cij = variable cost to serve all of EF j’s demand from site i 

 yi = 1, if NF established at site i; 0, otherwise 

 xij = fraction of EF j’s demand served from NF at site i. 

The UFL problem is a MILP because the yi’s are binary variables and the xij’s are real variables. 
In the UFL problem, all xij are 0 or 1; in the capacitated facility location (CFL) problem, there is 
a maximum capacity associated with each site, resulting in a xij value between 0 and 1 whenever 
not all of an EF j’s demand can be served from the NF at site j. 

The MILP for the UFL problem is termed the “strong formulation” due to constraints (1.9), 
which results in an LP relaxation that gives a tight lower bound. When nm  constraints (1.9) are 
replaced with the n constraints 

 
1

m

i ij
j

m y x


  , 1, ,i n  , (1.12) 

the formulation is termed “weak” since the lower bound from the LP relaxation is not very tight, 
resulting in a large branch-and-bound tree. 

Example 

Given n = 6 sites, m = 6 EFs, and fixed and variable costs  
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  

8 0 3 7 10 6 4
8 3 0 4 7 6 7

10 7 4 0 3 6 8
;

8 10 7 3 0 7 8
9 6 6 6 7 0 2
8 4 7 8 8 2 0

i ijk c

   
   
   
         
   
   
   

, 

the optimal solution is to establish two NFs at sites 3 and 6 serving EFs 2–4 and EFs 1, 5, and 6, 
respectively, for a TC = 31:  

  

0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 1 1 1 0 0

;
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 1 0 0 0 1 1

i ijy x

   
   
   
         
   
   
   

. 

1.4.2  The p-Median Problem 
When the number of NFs is specified and all of fixed costs are identical (or not stated), then the 
fixed costs will have no impact on the location decision and can be set to zero in (1.7) and the 
following constraint can be added to the UFL problem to formulate the p-median problem: 

 
1

n

i
i

y p


 , (1.13) 

where p is the number of NFs to be located. If non-identical fixed are included, then the p-
median problem generalizes to the p-UFL problem, where both p-median and UFL are special 
cases.4 
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Notes 
1 What are FOB shipping terms? http://simplestudies.com/what-are-fob-shipping-terms.html (accessed Jan 2012). 
2 Sinnott, R.W., 1984, “Virtues of the Haversine”, Sky and Telescope 68(2):159, as reported in 
http://www.census.gov/cgi-bin/geo/gisfaq?Q5.1 
3 Table is adapted from Inbound Logistics, Oct. 2004, p. 50. 
4 Krarup, J., and Pruzan, P.M., “Ingredients of locational analysis,” in Mirchandani, P.B., and Francis, R.L., Eds., 
1990, Discrete Location Theory, New York: Wiley, p. 20. 
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Facility Location–Allocation Problem 

Location–Allocation (LA) Problem: Determine both the location of n new facilities (NFs) and 
the allocation of the flow requirements of m existing facilities (EFs) to the NFs that minimize 
total transportation costs. 

Continuous: Minimize  
1 1

, ( , )
m n

ji j i
i j

f X W w d X P
 

   

 subject to 
1

, 1, ,
n

ji i
j

w w i m


    

  0, 1, , ; 1, ,jiw j n i m     

where X =  , , 1, ,j j jX x y j n        , NF locations 

 W = , 1, , ; 1, ,jiw j n i m      , allocated flow requirements 

 Pi =  ,i ia b , location of EF i 

 ( , )j id X P  = distance between NF j and EF i  

 wi = flow requirement of EF i  

Since there are no capacity constraints on the NFs, optimal solutions lie at extreme points of the 
constraint set of the nonlinear programming (Continuous) formulation of LA problem, i.e., 

 wki = wi, for j = k, and wji = 0, for j  k, 

allocated flow requirements W can be replaced by the allocation vector 

    , 1, , , and 1, ,i ii m n     
 

resulting in a mixed continuous–combinatorial formulation: 

Mixed: Minimize  
1

, ( , )i

m

i i
i

f X w d X P


   

If there were constraints on the maximum flow capacity of the NFs, then more than one wji could 
be nonzero in an optimal solution and W could not be replaced by the allocation vector . 
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Figure 1. 9-EF by 3-NF location–allocation problem instance. 

 NF locations:      1.7, 1.3 , 3.4, 9.3 , 8.0, 5.5X      

 Allocation vector:  1 3 1 3 1 1 3 3 2   

 Total transportation cost:  ,f X   = 11.78 

 Euclidean distances:      2 2
,i i ii i id X P x a y b       

 Flow requirements: All wi = 1 

 Number of feasible allocations: 
9

3,025
3

m
n

       
   

 

Alternate Location–Allocation (ALA) Procedure 
Given initial NF locations, ALA local improvement procedure finds optimal EF allocations and 
then finds optimal NF locations for these allocations, continuing to alternate until no further EF 
allocation changes are made. Introduced by Cooper in 1963, ALA is still the best heuristic for the 
LA problem. Since the ALA procedure finds only a local optima, the procedure should be 
applied multiple times using different initial NF locations, keeping the best solution found as the 
final solution. This type of repeated application of a local improvement procedure is termed a 
multistart metaheuristic. 
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Figure 2. ALA procedure for 7-EF by 2-NF problem instance 

ALA PROCEDURE:    , , ,X ALA X P w   

1. Given initial NF locations X 

2. TC   

3.  ,allocate X P  

4.  , ,X locate P w   

5. If  ,TC X TC   , stop; otherwise 
 ,TC TC X   , X X  ,    , and go to step 3 
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LOCATION PROCEDURE: 

 Solve n single-facility location problems using the EFs allocated to each NF 

 Exact O(m) procedure for rectilinear distances (median conditions) 

 Iterative procedure for general lp distances—in MATLAB, quasi-Newton followed by 
Nelder-Mead simplex 

ALLOCATION PROCEDURE: 

 Allocate each EF to its closest NF 

 If NFs were capacitated, then would have to solve a minimum cost network flow problem 
to perform the allocation, where each EF might be allocated to more than one NF 

Solution Space of LA Problem 
Mix of continuous and combinatorial 

Continuous: X 

 2n-dimensional space of NF locations:    1 1, , , ,n nX x y x y     

Combinatorial:  

 
1

1
( 1)

!

n
n j m

j

m n
j

n jn




       
   

  feasible allocations of n NFs to m EFs 

Although n
m
 allocations are possible, since NFs are indistinguishable: 

 Number of feasible allocations = number of ways m distinguishable EFs can be allocated to n 
indistinguishable NFs, with each NF allocated to at least one 
EF 

 = Stirling number of the second kind 

 = 
m
n

 
 
 

 

For example: 8 437 20 65
63, 5.8 10 , and 2.3 10

2 3 5
              
     

 

 

 

 


