U.S. Geographic Statistical Areas

- Defined by Office of Management and Budget (OMB)
 - Each consists of one or more counties
- Top-to-bottom:
 - 1. Metropolitan divisions
 - 2. Combined statistical areas (CSAs)
 - 3. Core-based statistical areas (CBSAs)
 - Metropolitian/ micropolitan statistical areas (MSAs)
 - 5. County (rural)

Aggregate Demand Point Data Sources

- Aggregate demand point: centroid of population + area + population
- Good rule of thumb: use at least 10x number of NFs (\approx 100 pts provides minimum coverage for locating \approx 10 NFs)
- 1. City data: ONLY USE FOR LABELING!, not as aggregate demand points
- 2. 3-digit ZIP codes: \approx 1000 pts covering U.S., = 20 pts NC
- 3. County data: \approx 3000 pts covering U.S., = 100 pts NC
 - Grouped by state or CSA (Combined Statistical Area)
 - CSA = defined by set of counties (174 CSAs in U.S.)
 - FIPS code = 5-digit state-county FIPS code
 - = 2-digit state code + 3-digit county code
 - = 37183 = 37 NC FIPS + 183 Wake FIPS
 - CSA List: www2.census.gov/programs-surveys/metro-micro/geographies/ reference-files/2017/delineation-files/list1.xls
- 4. 5-digit ZIP codes: > 35K pts U.S., \approx 1000 pts NC
- Census Block Group: > 220K pts U.S., ≈ 1000 pts Raleigh-Durham-Chapel Hill, NC CSA
 - Grouped by state, county, or CSA
 - Finest resolution aggregate demand data source

City vs CSA Population Data

Rank	City; State	2010 population	2012 population
1	New York City; New York	8,175,133	8,336,697
2	Los Angeles; California	3,792,621	3,857,799
3	Chicago; Illinois	2,695,598	2,714,856
4	Houston; Texas	2,099,451	2,160,821
5	Philadelphia; Pennsylvania	1,526,006	1,547,607
6	Phoenix; Arizona	1,445,632	1,488,750
7	San Antonio; Texas	1,327,407	1,382,951
8	San Diego; California	1,307,402	1,338,348
9	Dallas; Texas	1,197,816	1,241,162
10	San Jose; California	945,942	982,765
11	Austin; Texas	790,390	842,592
12	Jacksonville; Florida	821,784	836,507
13	Indianapolis; Indiana	820,445	834,852
14	San Francisco; California	805,235	825,863
15	Columbus; Ohio	787,033	809,798
16	Fort Worth; Texas	741,206	777,992
17	Charlotte; North Carolina	731,424	775,202
18	Detroit; Michigan	713,777	701,475
19	El Paso; Texas	649,121	672,538
20	Memphis; Tennessee	646,889	655,155

Metropolitan Area	2010 Population	City
New York-Northern NJ-Long Island, NY-NJ-PA	18,897,109	New York
Los Angeles-Long Beach-Santa Ana, CA	12,828,837	Los Angeles
Chicago-Joliet-Naperville, IL-IN-WI	9,461,105	Chicago
Dallas-Fort Worth-Arlington, TX	6,371,773	Dallas
Philadelphia-Camden-Wilmington, PA-NJ-DE-MD	5,965,343	Philadelphia
Houston-Sugar Land-Baytown, TX	5,946,800	Houston
Washington-Arlington-Alexandria, DC-VA-MD-WV	5,582,170	Washington
Miami-Fort Lauderdale-Pompano Beach, FL	5,564,635	Miami
Atlanta-Sandy Springs-Marietta, GA	5,268,860	Atlanta
Boston-Cambridge-Quincy, MA-NH	4,552,402	Boston
San Francisco-Oakland-Fremont, CA	4,335,391	San Francisco
Detroit-Warren-Livonia, MI	4,296,250	Detroit
Riverside-San Bernardino-Ontario, CA	4,224,851	Riverside
Phoenix-Mesa-Glendale, AZ	4,192,887	Phoenix
Seattle-Tacoma-Bellevue, WA	3,439,809	Seattle
Minneapolis-St. Paul-Bloomington, MN-WI	3,279,833	Minneapolis
San Diego-Carlsbad-San Marcos, CA	3,095,313	San Diego
St. Louis, MO-IL	2,812,896	St. Louis
Tampa-St. Petersburg-Clearwater, FL	2,783,243	Tampa
Baltimore-Towson, MD	2,710,489	Baltimore

Demand Point Aggregation

- *Existing facility* (EF): actual physical location of demand source
- Aggregate demand point: single location representing multiple demand sources

Demand Point Aggregation

• Calculation of aggregate point depends on objective

• For minisum location, would like for any location *x*:

$$(w_1 + w_2)d(x, x_{agg}) = w_1d(x, x_1) + w_2d(x, x_2), \quad \text{let } x = 0, x_1, x_2 > 0$$

$$(w_1 + w_2)x_{agg} = w_1x_1 + w_2x_2$$

$$x_{\text{agg}} = \frac{w_1 x_1 + w_2 x_2}{w_1 + w_2} \Longrightarrow$$
 centroid

Note: if $x_1 < x < x_2$, then x_{agg} not centroid

• For squared distance: $(w_1 + w_2)x_{agg}^2 = w_1x_1^2 + w_2x_2^2$

$$x_{agg} = \sqrt{\frac{w_1 x_1^2 + w_2 x_2^2}{w_1 + w_2}} \Rightarrow \text{not centroid}$$

Transport Cost if NF at every EF

Area Adjustment for Aggregate Data Distances

98

Fixed Cost and Economies of Scale

- Cost data from existing facilities can be used to fit linear estimate
 - Economies of scale in production $\Rightarrow k > 0$ and $\beta < 1$

$$TPC_{act} = \max_{f < f_{max}} \left\{ TPC_{min}, TPC_0 \left(\frac{f_0}{f_0} \right) \right\}$$
$$\beta = \begin{cases} 0.62, & \text{Hand tool mfg.} \\ 0.48, & \text{Construction} \\ 0.41, & \text{Chemical processing} \\ 0.23, & \text{Medical centers} \end{cases}$$
$$TPC_{est} = \mathbf{k} + c_p f$$
$$APC_{act} = \frac{TPC_{act}}{f} = \frac{TPC_0}{f_0^{\beta}} f^{\beta-1}$$
$$APC_{est} = \frac{k}{f} + c_p$$
$$k = \text{fixed cost}$$
$$c_p = \text{constant unit production cost}$$
$$f_{min}/f_{max} = \min/\max \text{ feasible scale}$$
$$f_{MES} = Minimum Efficient Scale$$

 TPC_0/f_0 = base cost/rate

 $(f)^{\beta}$

- Problem: Popco currently has 42 bottling plants across the western U.S. and wants to know if they should consider reducing or adding plants to improve their profitability.
- Solution: Formulate as an UFL to determine the number of plants that minimize Popco's production, procurement, and distribution costs.

• Following representative information is available for each of *N* current plants (DC) *i*:

 $xy_i =$ location

 f_i^{DC} = aggregate production (tons)

 TPC_i = total production and procurement cost

 TDC_i = total distribution cost

 Assuming plants are (monetarily) weight gaining since they are bottling plants, so UFL can ignore inbound procurement costs related to location

- Difficult to estimate fixed cost of each new facility because this cost must not include any cost related to quantity of product produced at facility.
- Use plant (DC) production costs to find UFL fixed costs via linear regression
 - variable production costs c_p do not change and can be cut

$$TPC = \sum_{i \in N} TPC_i = \sum_{i \in N} \left(\mathbf{k} + c_p f_i^{DC} \right)$$

(only keep **k** for UFL)

 Allocate all 3-digit ZIP codes to closest plant (up to 200 mi max) to serve as aggregate customer demand points.

$$M_{i} = \left\{ j : \arg\min_{h} d_{hj}^{a} = i \text{ and } d_{ij}^{a} \le d_{\max} \right\}$$
$$d_{\max} = 200 \text{ mi}$$
$$M = \bigcup_{i \in \mathcal{N}} M_{i}$$

3. Allocate each plant's demand (tons of product) to each of its customers based on its population.

$$f_{j \in M_i} = f_i^{DC} \frac{q_j}{\sum_{h \in M_i} q_h}$$

$$q_j$$
 = population of EF j

$$f_5 = f_2^{DC} \frac{q_5}{q_5 + q_6}$$

4. Estimate a nominal transport rate (\$/ton-mi) using the ratio of total distribution cost (\$) to the sum of the product of the demand (ton) at each customer and its distance to its plant (mi).

$$r_{\text{nom}} = \frac{\sum_{i \in N} TDC_i}{\sum_{i \in N} \sum_{j \in M_j} f_j d_{ij}^a}$$

5. Calculate UFL variable transportation cost c_{ij} (\$) for each possible NF site *i* (all customer and plant locations) and EF site *j* (all customer locations) as the product of customer *j* demand (ton), distance from site *i* to *j* (mi), and the nominal transport rate (\$/ton-mi).

$$\mathbf{C} = \begin{bmatrix} c_{ij} \end{bmatrix}_{\substack{i \in M \cup N \\ j \in M}} = \begin{bmatrix} r_{\text{nom}} f_j d_{ij}^a \end{bmatrix}_{\substack{i \in M \cup N \\ j \in M}}$$

6. Solve as UFL, where *TC* returned includes all new distribution costs and the fixed portion of production costs.

$$TC = \sum_{i \in Y}^{\text{fixed cost}} k_i^{\text{transport cost}} + \sum_{i \in Y}^{\text{transport cost}} c_{ij}$$
$$n = |M \cup N|, \text{ number of potential NF sites}$$
$$m = |M|, \text{ number of EF sites}$$