
Topics

1. Introduction

2. Facility location

3. Freight transport

– Exam 1 (take home)

4. Network models

5. Routing

– Exam 2 (take home)

6. Warehousing

– Final exam (in class)
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Graph Representations

• Complete bipartite directed (or digraph):

– Suppliers to multiple DCs, single mode of transport
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Graph Representations

• Bipartite:

– One- or two-way connections between nodes in two groups

Arc list matrix
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Graph Representations

• Multigraph:

– Multiple connections, multiple modes of transport
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Graph Representations

• Complete multipartite directed:

– Typical supply chain (no drop shipments)
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Transportation Problem

• Satisfy node demand from supply nodes

– Can be used for allocation in ALA when NFs have capacity 
constraints

– Min cost/distance allocation = infinite supply at each node
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Greedy Solution Procedure

• Procedure for transportation problem: Continue to select 
lowest cost supply until all demand is satisfied

– Fast, but not always optimal for transportation problem

– Dijkstra’s shortest path and simplex method for LP are 
optimal greedy procedures
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Min Cost Network Flow (MCNF) Problem

• Most general network problem, can solve using any type 
of graph representation

MCNF: lhs  C   C   C   C   C   C  rhs 

----:-------------------------------- 

 Min:       2   3   4   5   1   3     

   1:  6    1   1   0   0   0   0  6  

   2:  2   -1   0   1   1   0   0  2  

   3:  0    0  -1   0   0   1   0  0  

   4:  0    0   0  -1   0   0   1  0  

  lb:       0   0   0   0   0   0     

  ub:     Inf Inf Inf Inf Inf Inf     
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MCNF with Arc/Node Bounds and Node Costs

• Bounds on arcs/nodes can represent capacity constraints in a 
logistic network

• Node cost can represent production cost or intersection delay
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Expanded-Node Formulation of MCNF

• Node cost/constraints converted to arc cost/constraints
– Dummy node (8) added so that supply = demand
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Solving an MCNF as an LP
• Special procedures more efficient than LP were developed to 

solve MCNF and Transportation problems
– e.g., Network simplex algorithm (MCNF)

– e.g., Hungarian method (Transportation and Transshipment)

• Now usually easier to transform into LP since solvers are so 
good, with MCNF just aiding in formulation of problem:
– Trans  MCNF  LP

– Special, very efficient 
procedures only used
for shortest path
problem (Dijkstra)
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