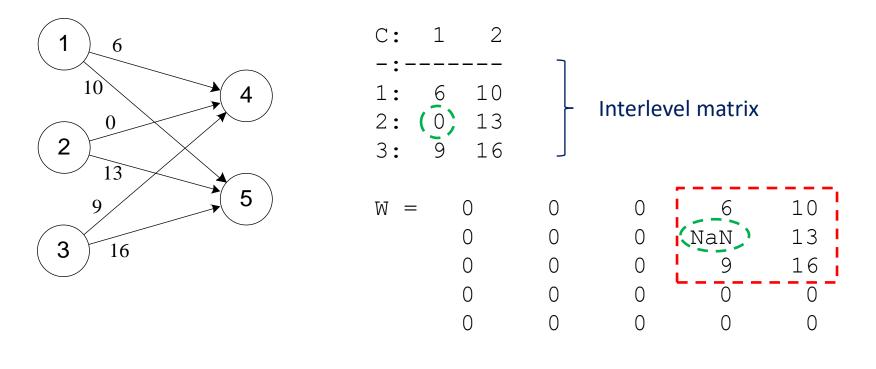
Topics

- 1. Introduction
- 2. Facility location
- 3. Freight transport
 - Exam 1 (take home)
- 4. Network models
- 5. Routing
 - Exam 2 (take home)
- 6. Warehousing
 - Final exam (in class)

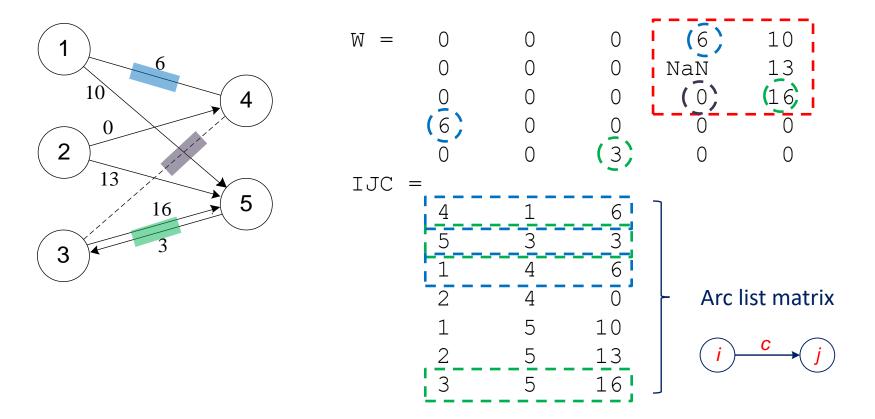
- Complete bipartite directed (or digraph):
 - Suppliers to multiple DCs, single mode of transport



Weighted adjacency matrix

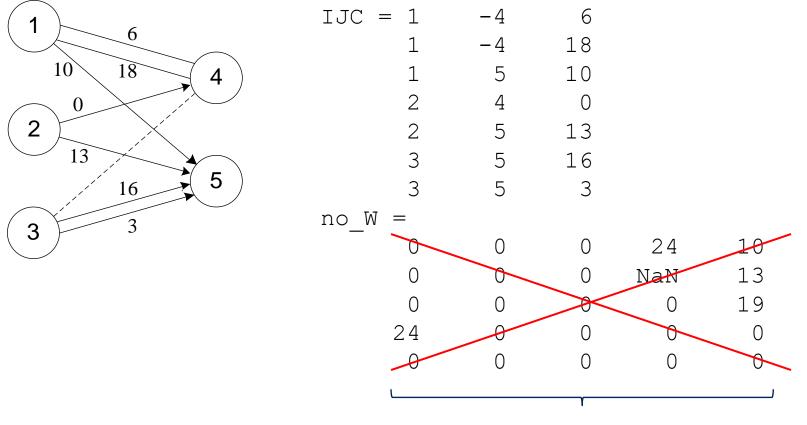
• Bipartite:

One- or two-way connections between nodes in two groups



• Multigraph:

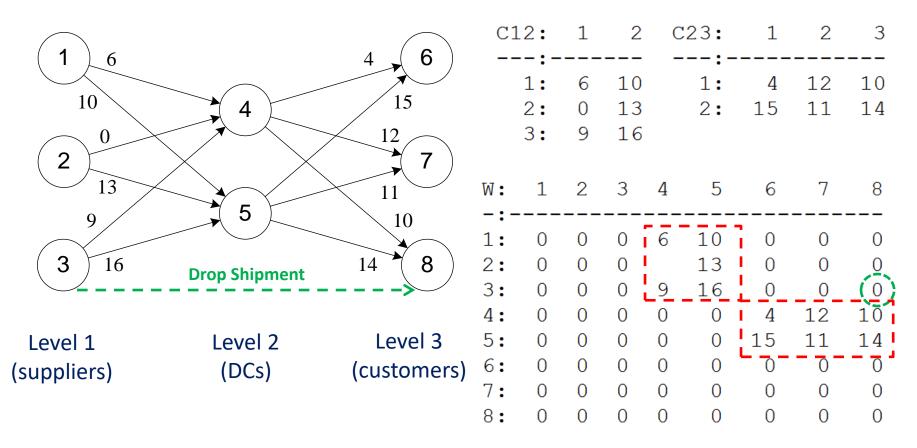
Multiple connections, multiple modes of transport



Can't represent using adjacency matrix

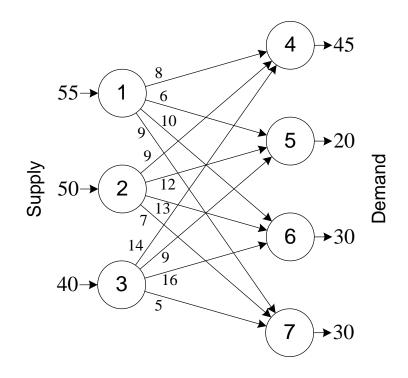
• Complete multipartite directed:

- Typical supply chain (no drop shipments)



Transportation Problem

- Satisfy node demand from supply nodes
 - Can be used for allocation in ALA when NFs have capacity constraints
 - Min cost/distance allocation = infinite supply at each node



Trans	4	5	6	7	Supply
1	8	6	10	9	55
2	9	12	13	7	50
3	14	9	16	5	40
Demand	45	20	30	30	

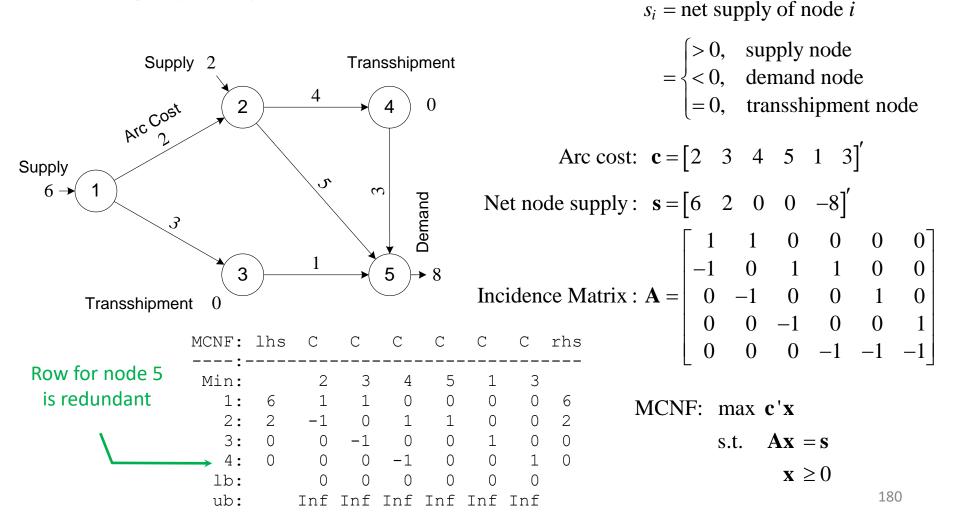
Greedy Solution Procedure

- Procedure for transportation problem: Continue to select lowest cost supply until all demand is satisfied
 - Fast, but not always optimal for transportation problem
 - Dijkstra's shortest path and simplex method for LP are optimal greedy procedures

·	Trans	4	5	6	7	Supply
	1	(8)	(6)	10	9	55 -20 = 35 -35 = 0
	2	(9)	12	(13)	7	50 -10 = 40 -30 = 10
	3	14	9	16	(5)	40 -30 = 10
	Demand	45	20	30	30	
		10	0	0	0	
		0				
TC = 5(30) + 6(20) + 8(35) + 9(10) + 13(30) = 1,030 (vs 970 optimal)						

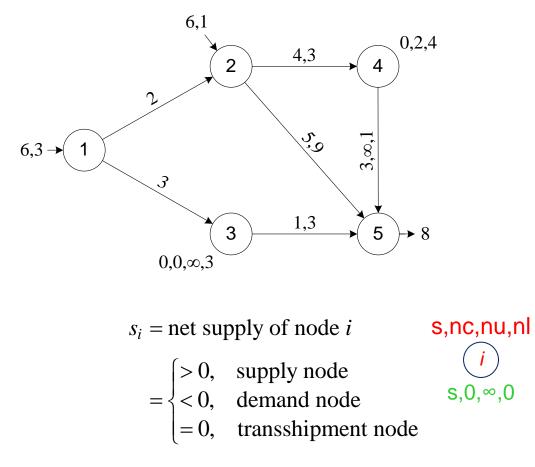
Min Cost Network Flow (MCNF) Problem

Most general network problem, can solve using any type of graph representation



MCNF with Arc/Node Bounds and Node Costs

- Bounds on arcs/nodes can represent capacity constraints in a logistic network
- Node cost can represent production cost or intersection delay

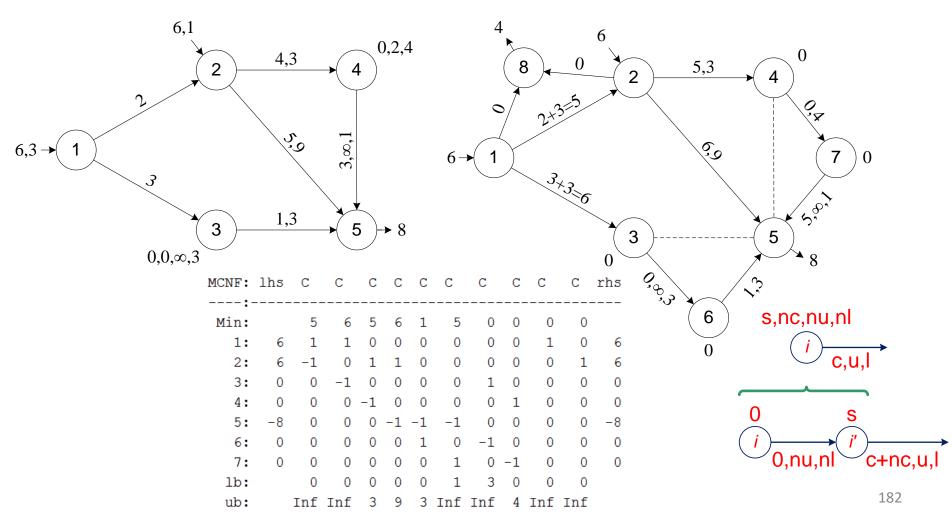


$i \xrightarrow{c,u,l} j$										
IJCUL:	1	2	3	4		5				
1:	1	2	2	In	 f	0				
2:	1	3	3	In	f	0				
3:	2	4	4		3	0				
4:	2	5	5		9	0				
5:	3	5	1		3	0				
6:	4	5	3	Inf		1				
SCUL:	1	2		3	4					
1:	6	3	1	nf.	0					
2:	6	1]	nf	0					
3:	0	0]	Inf	3					
4:	0	2		4	0					
5:	-8	0]	nf	0					

181

Expanded-Node Formulation of MCNF

- Node cost/constraints converted to arc cost/constraints
 - Dummy node (8) added so that supply = demand



Solving an MCNF as an LP

- Special procedures more efficient than LP were developed to solve MCNF and Transportation problems
 - e.g., Network simplex algorithm (MCNF)
 - e.g., Hungarian method (Transportation and Transshipment)
- Now usually easier to transform into LP since solvers are so good, with MCNF just aiding in formulation of problem:
 - Trans \Rightarrow MCNF \Rightarrow LP
 - Special, very efficient procedures only used for shortest path problem (Dijkstra)

