
Dijkstra Shortest Path Procedure

2

4 6

3
8

2

3

1

4

5

5

10

2 61s t

∞

∞ ∞

∞

∞ ∞

0,1

4,1

2,1 12,3

10,3

3,3 8,2

14,4

10,4

13,5

Path: 1 3 2 4 5 6 : 13    
184

Dijkstra Shortest Path Procedure

 

 

 

 

 

4

3

2

2 Simplex (LP)

Ellipsoid (LP)

Hungarian (transportation)

Dijkstra (linear min)

log Dijkstra (Fibonocci heap)

no. arcs

nO

O n

O n

O n

O m n

m

Order
important

Index to index
vector nS

185

Other Shortest Path Procedures
• Dijkstra requires that all arcs have nonnegative lengths

– It is a “label setting” algorithm since step to final solution made
as each node labeled

– Can find longest path (used, e.g., in CPM) by negating all arc
lengths

• Networks with only some negative arcs require slower “label
correcting” procedures that repeatedly check for optimality at
all nodes or detect a negative cycle
– Requires O(n3) via Floyd-Warshall algorithm (cf., O(n2) Dijkstra)

– Negative arcs used in project scheduling to represent maximum
lags between activities

• A* algorithm adds to Dijkstra an heuristic LB estimate of each
node’s remaining distance to destination
– Used in AI search for all types of applications (tic-tac-toe, chess)
– In path planning applications, great circle distance from each

node to destination could be used as LB estimate of remaining
distance

186

A* Path Planning Example 1

187

* (Raleigh, Dallas) (Raleigh,) (, Dallas), for each node dijk GCA
d d i d i i 

A* looks at a
fraction of the
nodes (in ellipse)
seen by Dijkstra
(in green)

A* Path Planning Example 2

• 3-D (x,y,t) A* used for planning path of each container in
a DC

• Each container assigned unique priority that determines
planning sequence

– Paths of higher-priority containers become obstacles for
subsequent containers

188

A* Path Planning Example 2

189

Minimum Spanning Tree

• Find the minimum cost set of arcs that connect all nodes

– Undirected arcs: Kruskal’s algorithm (easy to code)

– Directed arcs: Edmond’s branching algorithm (hard to
code)

190

U.S. Highway Network

• Oak Ridge National Highway Network

– Approximately 500,000 miles of roadway in US, Canada,
and Mexico

– Created for truck routing, does not include residential

– Nodes attributes: XY, FIPS code

– Arc attributes: IJD, Type (Interstate, US route), Urban

191

FIPS Codes
• Federal Information Processing Standard (FIPS) codes used to

uniquely identify states (2-digit) and counties (3-digit)

– 5-digit Wake county code = 2-digit state + 3-digit county
= 37183 = 37 NC FIPS + 183 Wake FIPS

192

20 15

10

15

15

10
10

1
5

Road Network Modifications

1. Thin

– Remove all degree-2 nodes from network

– Add cost of both arcs incident to each degree-2 node

– If results in multiple arcs
between pair of nodes, keep
minimum cost

193

Thinned I-40 Around Raleigh

70

Road Network Modifications

2. Subgraph

– Extract portion of graph with only those nodes and/or arcs
that satisfy some condition

194

Subgraph of Arcs < 35

Subgraph of
Nodes in
Rectangle

Road Network Modifications

3. Add connector

– Given new nodes, add arcs that connect the new nodes to
the existing nodes in a graph and to each other

195

– Distance of connector
arcs = GC distance x
circuity factor (1.5)

– New node connected
to 3 closest existing
nodes, except if
– Ratio of closest to 2nd

and 3rd closest <
threshold (0.1)

– Distance shorter
using other connector
and graph

1

 2

3

4

5

6

7

1

 2

3

4

5

6

7

1

 2

3

4

5

6

7

1

 2

3

4

5

6

7
New to existing node

New to new node

New node

