Topics

- 1. Introduction
- 2. Facility location
- 3. Freight transport
	- Exam 1 (take home)
- 4. Network models
- 5. Routing
	- Exam 2 (take home)
- **6. Warehousing**
	- Final exam (in class)

Warehousing

- *Warehousing* are the activities involved in the design and operation of warehouses
- A *warehouse* is the point in the supply chain where raw materials, work-in-process (WIP), or finished goods are stored for varying lengths of time.
- Warehouses can be used to add value to a supply chain in two basic ways:
	- 1. Storage. Allows product to be available where and when its needed.
	- 2. Transport Economies. Allows product to be collected, sorted, and distributed efficiently.
- A *public warehouse* is a business that rents storage space to other firms on a month-to-month basis. They are often used by firms to supplement their own *private warehouses*.

Types of Warehouses

Warehouse Design Process

- The objectives for warehouse design can include:
	- maximizing cube utilization
	- minimizing total storage costs (including building, equipment, and labor costs)
	- achieving the required storage throughput
	- enabling efficient order picking
- In planning a storage layout: either a storage layout is required to fit into an existing facility, or the facility will be designed to accommodate the storage layout.

Warehouse Design Elements

- The design of a new warehouse includes the following elements:
	- 1. Determining the layout of the storage locations (i.e., the warehouse layout).
	- 2. Determining the number and location of the input/output (I/O) ports (e.g., the shipping/receiving docks).
	- 3. Assigning items (stock-keeping units or *SKUs*) to storage locations (*slots*).
- A typical objective in warehouse design is to minimize the overall storage cost while providing the required levels of service.

Design Trade-Off

• Warehouse design involves the trade-off between building and handling costs:

```
min Building Costs vs. min Handling Costs
          \mathbb{D}\mathbb{I}max Cube Utilization vs. max Material Accessibility
```
Shape Trade-Off

vs.

Square shape minimizes perimeter length for a given area, thus minimizing building costs

Aspect ratio of 2 ($W = 2D$) min. expected distance from I/O port to slots, thus minimizing handling costs

Storage Trade-Off

vs.

Maximizes cube utilization, but minimizes material accessibility

Making at least one unit of each item accessible decreases cube utilization

Storage Policies

- A storage policy determines how the slots in a storage region are assigned to the different SKUs to the stored in the region.
- The differences between storage polices illustrate the trade-off between minimizing building cost and minimizing handling cost.
- Type of policies:
	- Dedicated
	- Randomized
	- Class-based

Dedicated Storage

- Each SKU has a predetermined number of slots assigned to it.
- Total capacity of the slots assigned to each SKU must equal the storage space corresponding to the maximum inventory level of each *individual* SKU.
- Minimizes handling cost.
- Maximizes building cost.

Randomized Storage

- Each SKU can be stored in any available slot.
- Total capacity of all the slots must equal the storage space corresponding to the maximum *aggregate* inventory level of all of the SKUs.
- Maximizes handling cost.
- Minimizes building cost.

Class-based Storage

- Combination of dedicated and randomized storage, where each SKU is assigned to one of several different storage classes.
- Randomized storage is used for each SKU within a class, and dedicated storage is used between classes.
- Building and handling costs between dedicated and randomized.

Individual vs Aggregate SKUs

Cube Utilization

- *Cube utilization* is percentage of the total space (or "cube") required for storage actually occupied by items being stored.
- There is usually a trade-off between cube utilization and material accessibility.
- Bulk storage using block stacking can result in the minimum cost of storage, but material accessibility is low since only the top of the front stack is accessible.
- Storage racks are used when support and/or material accessibility is required.

Honeycomb Loss

• *Honeycomb loss*, the price paid for accessibility, is the unusable empty storage space in a lane or stack due to the storage of only a single SKU in each lane or stack

Estimating Cube Utilization

• The (3-D) cube utilization for dedicated and randomized storage can estimated as follows:

Cube utilization $=$ $\frac{\text{item space}}{\text{total space}} = \frac{\text{item space}}{\text{item space} + \left(\frac{\text{honeycomb}}{\text{loss}}\right) + \left(\frac{\text{down aisle}}{\text{space}}\right)}$ 1^{11} dedicate $1 \mid H \mid$ **item space in the control in the CUBE Utilization**

The (3-D) cube utilization for dedicated and randomized

storage can estimated as follows:

Cube utilization = $\frac{\text{item space}}{\text{total space}} = \frac{\text{item space}}{\text{temp space} + \text{hongycomb}} + \text{hogow aisle}}{\text{frame of case}}$ **g Cube Utiliza**

tion for dedicated an

d as follows:
 $\frac{\text{item space}}{\text{base} + \left(\text{honeycomb}\right) + \left(\text{down a}\right)}$
 $\frac{\text{space} + \left(\text{honeycomb}\right) + \left(\text{down a}\right)}{x} = \text{linear to a point.}$

andomized
 $\frac{y}{z} = \text{unit-l.}$
 $\frac{M}{z} = \text{max in } M = \text{max in } D = \text{number}$

randomized
 \frac **Estimating Cu**

3-D) cube utilization for

ge can estimated as for

ation = $\frac{\text{item space}}{\text{total space}} = \frac{1}{\text{item space} + \left(\frac{TS(D)}{TS(D)}\right)}$

(3-D) = $\begin{cases} \frac{x \cdot y \cdot z \cdot \sum_{i=1}^{N} M_i}{TS(D)}, & \text{reducl} \\ \frac{x \cdot y \cdot \sum_{i=1}^{N} \left[\frac{M_i}{H}\right]}{TA(D)}, & \text{ded} \\ \frac{x \cdot y$ **compared to the Utilization**

ilization for dedicated and

ated as follows:
 $=\frac{\text{item space}}{\text{item space} + \left(\frac{\text{honeycomb}}{\text{loss}}\right) + \left(\frac{\text{down}}{\text{safe}}\right)}$
 $=\frac{M}{\text{term space}}$, dedicated
 $\frac{\text{where}}{x} = \text{lanelumid}$
 $\frac{M_i}{y} = \text{unit-load}$
 $\frac{M_i}{H} = \text{maximum}$
 ating C
 a utilization

itimated as
 $\frac{\text{pace}}{\text{space}} = \frac{\text{space}}{\text{item space}}$
 $\frac{z \cdot \sum_{i=1}^{N} M_i}{TS(D)}$, ded:
 $\frac{Z \cdot M}{T S(D)}$, ded
 $\frac{\sum_{i=1}^{N} \left[\frac{M_i}{H}\right]}{T A(D)}$, ded
 $\left[\frac{M}{H}\right]$, rang **g Cube Utiliza**
tion for dedicated an
d as follows:
 $\frac{\text{item space}}{\text{space} + \frac{\text{honeycomb}}{\text{loss}}} + \frac{\text{down } \text{air}}{\text{space}}$
 $\frac{\text{space}}{\text{space} + \frac{\text{honeycomb}}{\text{loss}}} + \frac{\text{down } \text{air}}{\text{space}}$
 $\frac{\text{value of the number of times in the image}}{x = \text{tanh} \times x = \text$ **Estimating Cu**

3-D) cube utilization for

ge can estimated as for

ation = $\frac{\text{item space}}{\text{total space}} = \frac{1}{\text{item space} + \left(\frac{TS(D)}{TS(D)}\right)}$

(3-D) = $\begin{cases} \frac{x \cdot y \cdot z \cdot \sum_{i=1}^{N} M_i}{TS(D)}, & \text{reducl} \\ \frac{x \cdot y \cdot \sum_{i=1}^{N} \left[\frac{M_i}{H}\right]}{TA(D)}, & \text{dedica} \\ \frac{x \cdot$ $N_{\rm{max}}$ $\sum_{i=1}^{N} M_i$ dedicated where $N \mid M_i \mid$ $i=1$ \boldsymbol{H} $\boldsymbol{\cdot}$ **imating Cube Utilization**

ube utilization for dedicated and

estimated as follows:

em space = $\frac{1}{\text{item space} + \left(\text{honeycomb}\right) + \left(\text{down aim space}\right)}$
 $\frac{x \cdot y \cdot z \cdot \sum_{i=1}^{N} M_i}{TS(D)}$, dedicated where
 $\frac{x \cdot y \cdot z \cdot M}{TS(D)}$, randomized $\frac{x \cdot$ **Estimating Cube Ut**
 Estimation for dedicat

rage can estimated as follows:

ilization = $\frac{\text{item space}}{\text{total space}} = \frac{\text{item space}}{\text{item space} + \left(\frac{\text{honeycomb}}{\text{loss}}\right) + \left(\frac{x \cdot y \cdot z \cdot \sum_{i=1}^{N} M_i}{T S(D)}\right)}$, dedicated where
 $CU(3-D) = \begin{cases} \frac{x \cdot y \cdot z \cdot \sum$ **imating Cube Utili**

ube utilization for dedicated
 $x \text{ estimate of } x \text{ estimate}$
 $\frac{m \text{ space}}{\text{ data space}} = \frac{\text{item space}}{\text{item space} + \left(\frac{\text{honeycomb}}{\text{loss}}\right) + \left(\frac{\text{do}}{\text{loss}}\right)}$
 $\frac{x \cdot y \cdot z \cdot \sum_{i=1}^{N} M_i}{TS(D)},$ dedicated
 $\frac{x \cdot y \cdot z \cdot M}{TS(D)},$ randomized
 $\frac{x \cdot y$ **IMATIME Cube Utilize**

whe utilization for dedicated an
 $T_s = \frac{1}{2}$
 $T_s = \frac{1}{$ **Estimating Cube Utilization for dedicat**
 PA (3-D) cube utilization for dedicat

rage can estimated as follows:
 EXECUTE:
 TAD
 $CU(3-D) = \begin{cases} \frac{x \cdot y \cdot z \cdot \sum_{i=1}^{N} M_i}{T S(D)} , & \text{dedicated} \\ \frac{x \cdot y \cdot z \cdot M}{T S(D)} , & \text{randomized} \\ \frac{x \cdot y \cdot \sum_{$ $\left| x \cdot y \cdot \right| \frac{m}{\sigma^2}$ $=1$ μ **cube utilization for dedicated and randomized**
an estimated as follows:
 $=\frac{\lim_{\text{space}}\text{space}}{\lim_{\text{space}}}=\frac{\lim_{\text{space}}\text{space}}{\lim_{\text{space}}\text{space}}+\frac{\left(\text{hongoomb}\right)+\left(\text{downaise}\right)}{\text{loss}}+\left(\text{downaise}\right)}$
 $=\frac{\left(\frac{x \cdot y \cdot z \cdot \sum_{i=1}^{N} M_i}{T S(D)}\right)}{\left(\frac{x \cdot y \cdot z \cdot M}{$ Cube Utilization

for dedicated and randomized

follows:
 $\frac{\text{item space}}{(\text{hongycomb}) + (\text{down aisle})}$
 $+\frac{\text{(hongycomb)}}{\text{base}} + \frac{\text{(down aisle)}}{\text{space}}$
 $\frac{x = \text{lanc/min}\text{-load width}}{x = \text{unit}\text{-load height}}$
 $\frac{M_x}{x} = \text{maximum number of units of SKU}$
 $\frac{M_x}{x} = \text{maximum number of units of sRU}$
 $\frac{M_y}{x} = \text{maximum number of units of$ **cube utilization for dedicated and randomized**
an estimated as follows:
 $=\frac{\lim_{\text{space}}\text{space}}{\lim_{\text{space}}}=\frac{\lim_{\text{space}}\text{space}}{\lim_{\text{space}}\text{space}}+\frac{\left(\text{hongoomb}\right)+\left(\text{downaise}\right)}{\text{loss}}+\left(\text{downaise}\right)}$
 $=\frac{\left(\frac{x \cdot y \cdot z \cdot \sum_{i=1}^{N} M_i}{T S(D)}\right)}{\left(\frac{x \cdot y \cdot z \cdot M}{$ **comparison**
 comparison compared that the CHI CONSET ACTS (CONSET ACTS)

The magnetic and the magnetic development of the magnetic intermediated and the magneton of the magneton $\frac{N}{\sin M}$, dedicated where
 $\frac{N}{\sin M}$, dedicated where
 $\frac{N$ **cube utilization for dedicated and randomized**
an estimated as follows:
 $=\frac{\lim_{\text{space}}\text{space}}{\lim_{\text{space}}}=\frac{\lim_{\text{space}}\text{space}}{\lim_{\text{space}}\text{space}}+\frac{\left(\text{hongoomb}\right)+\left(\text{downaise}\right)}{\text{loss}}+\left(\text{downaise}\right)}$
 $=\frac{\left(\frac{x \cdot y \cdot z \cdot \sum_{i=1}^{N} M_i}{T S(D)}\right)}{\left(\frac{x \cdot y \cdot z \cdot M}{$ $\cdot y \cdot \frac{m}{\sigma}$ $\left[x \cdot y \cdot \sum_{i=1}^{N} \left[\frac{M_i}{H} \right] \right]$ $M_i = \text{maximum}$ the Cube Utilization

ilization for dedicated and

ated as follows:
 $=\frac{\text{item space}}{\text{item space}}\left(\frac{\text{honeycomb}}{\text{loss}}\right)+\left(\frac{\text{down aside}}{\text{space}}\right)$
 $=\text{num}+\left(\frac{\text{down inside}}{\text{space}}\right)+\left(\frac{\text{down inside}}{\text{space}}\right)$
 $=\text{num}+\text{load}$
 $\frac{M_i}{F}$
 $=\text{min}+\text{load}$
 $\frac{M_i}{F}$
 nating Cube Utili

be utilization for dedicated

stimated as follows:
 $\frac{1 \text{ space}}{1 \text{ space}} = \frac{\text{ item space}}{\text{ item space} + \left(\frac{\text{honeycomb}}{\text{loss}}\right) + \left(\frac{\text{det} \times \text{diag}(D)}{\text{loss}}\right)}$
 $\frac{y \cdot z \cdot \sum_{i=1}^{N} M_i}{TS(D)},$ dedicated
 $\frac{y \cdot z \cdot M}{TS(D)},$ dedicated
 mating Cube U
be utilization for dedicates estimated as follows:
 $\frac{m \space space}{m \space space} = \frac{\text{item space}}{\text{item space} + \left(\frac{\text{honeycomb}}{\text{loss}}\right)}$
 $\frac{m \space space}{TS(D)}$, dedicated where $\frac{m \space space}{TS(D)}$, andomized $\frac{m \space type}{TS(D)}$, dedicated $\frac{m \space type}{TS(D)}$, dedic $\left| \left| x \cdot y \cdot \sum_{i=1} \right| \frac{1}{|H|} \right|$ $\left\{\n\begin{array}{cc}\n\text{max} \\
\text{max}\n\end{array}\n\right\}$ **comparison**
 comparison

Unit Load

- *Unit load*: single unit of an item, or multiple units restricted to maintain their integrity
- Linear dimensions of a unit load:

Depth (stringer length) *Width* (deckboard length)

y x

• Pallet height (5 in.) + load height gives $z: y \times x \times z$

Cube Utilization for Dedicated Storage

Total Space/Area

• The total space required, as a function of lane depth *D*:

The total space required, as a function of lane of
Total space (3-D):
$$
TS(D) = X \cdot \left(Y + \frac{A}{2}\right) \cdot Z = xL(D) \cdot \left(yD + \frac{A}{2}\right) \cdot zH
$$

Eff. lane depth

Total area (2-D):
$$
TA(D) = \frac{TS(D)}{Z} = X \cdot Y^{\text{eff}} = xL(D) \cdot \left(yD + \frac{A}{2}\right)
$$

-
-
-
-

Number of Lanes

Given *D*, estimated total number of lanes in region:

Optimal Lane Depth

• Solving for *D* in $dTS(D)/dD = 0$ results in:

Optimal lane depth for randomized storage (in rows): D^*

$$
* = \left\lfloor \sqrt{\frac{A(2M-N)}{2NyH}} + \frac{1}{2} \right\rfloor
$$

Lane Depth (in Rows)

Max Aggregate Inventory Level

- Usually can determine max inventory level for each SKU: – *Mⁱ* = maximum number of units of SKU *i*
- Since usually don't know *M* directly, but can estimate it **if**
	- SKUs' inventory levels are uncorrelated
	- Units of each item are either stored or retrieved at a constant rate

$$
M = \left\lfloor \sum_{i=1}^{N} \frac{M_i}{2} + \frac{1}{2} \right\rfloor
$$

- Can add include safety stock for each item, *SSⁱ*
- For example, if the order size of three SKUs is 50 units and 5 units of for each item, SS_i

f three SKUs is 50 units and 5 units of
 $+\frac{1}{2}$ = $\left[3\left(\frac{50}{2}+5\right)+\frac{1}{2}\right]$ = 90

each item are held as safety stock
\n
$$
M = \left[\sum_{i=1}^{N} \left(\frac{M_i - SS_i}{2} + SS_i \right) + \frac{1}{2} \right] = \left[3 \left(\frac{50}{2} + 5 \right) + \frac{1}{2} \right] = 90
$$

Steps to Determine Area Requirements

- 1. For randomized storage, assumed to know *N*, *H*, *x*, *y*, *z*, *A*, and all *Mⁱ*
	- Number of levels, *H*, depends on building clear height (for block stacking) or shelf spacing
	- Aisle width, *A*, depends on type of lift trucks used
- 2. Estimate maximum aggregate inventory level, *M*
- 3. If *D* not fixed, estimate optimal land depth, *D**
- 4. Estimate number of lanes required, *L*(*D**)
- 5. Determine total 2-D area, *TA*(*D**)

Aisle Width Design Parameter

- Typically, *A* (and sometimes *H*) is a parameter used to evaluate different overall design alternatives
- Width depends on type of lift trucks used, a narrower aisle truck
	- reduces area requirements (building costs)
	- costs more and slows travel and loading time (handling costs)

Units of items A, B, and C are all received and stored as $42 \times 36 \times$ 36 in. ($y \times x \times z$) pallet loads in a storage region that is along one side of a 10-foot-wide down aisle in the warehouse of a factory. The shipment size received for each item is 31, 62, and 42 pallets, respectively. Pallets can be stored up to three deep and four high in the region. **5: Area Requirements**

, and C are all received and stored as *d*

llet loads in a storage region that is al

ide down aisle in the warehouse of a

received for each item is 31, 62, and 4

y. Pallets can be stored up to **5: Area Requirements**

, and C are all received and stored as 42×36

llet loads in a storage region that is along one

vide down aisle in the warehouse of a factory.

received for each item is 31, 62, and 42

y. Pall **5: Area Requirements**

, and C are all received and stored as 42×36

illet loads in a storage region that is along one

vide down aisle in the warehouse of a factory.

received for each item is 31, 62, and 42

y. Pal **26: Area Requirements**
 x, *B*, and *C* are all received and stored as 42 × 36 *i*

pallet loads in a storage region that is along one

t-wide down aisle in the warehouse of a factory.

ize received for each item is 31 **26: Area Requirements**
 y, B, and C are all received and stored as $42 \times 36 \times$

pallet loads in a storage region that is along one

t-wide down aisle in the warehouse of a factory.

ize received for each item is 31, 62 **26: Area Requirements**
 z, **B**, and C are all received and stored as $42 \times 36 \times$

pallet loads in a storage region that is along one
 z-wide down aisle in the warehouse of a factory.
 *z*e received for each item is 3 **26: Area Requirements**

B, and C are all received and stored as $42 \times 36 \times$

ballet loads in a storage region that is along one

wide down aisle in the warehouse of a factory.

e received for each item is 31, 62, and 42

$$
x = \frac{36}{12} = 3' \qquad M_A = 31 \qquad A = 10'
$$

$$
y = 3.5'
$$
 $M_B = 62$ $D = 3$
 $z = 3'$ $M_C = 42$ $H = 4$

$$
y = 3.3
$$
 $M_B = 62$ $D = 3$
 $z = 3'$ $M_C = 42$ $H = 4$

$$
N=3
$$

1. If a dedicated policy is used to store the items, what is the 2- D cube utilization of this storage region?

EX 26: Area Requirements
\nIf a dedicated policy is used to store the items, what is the 2-
\nD cube utilization of this storage region?
\n
$$
L(D) = L(3) = \sum_{i=1}^{N} \left[\frac{M_i}{DH} \right] = \left[\frac{31}{3(4)} \right] + \left[\frac{62}{3(4)} \right] + \left[\frac{42}{3(4)} \right] = 3 + 6 + 4 = 13 \text{ lanes}
$$
\n
$$
TA(3) = xL(D) \cdot \left(yD + \frac{A}{2} \right) = 3(13) \cdot \left(3.5(3) + \frac{10}{2} \right) = 605 \text{ ft}^2
$$
\n
$$
CU(3) = \frac{\text{item space}}{TA(3)} = \frac{x \cdot y \cdot \sum_{i=1}^{N} \left[\frac{M_i}{H} \right]}{TA(3)} = \frac{3 \cdot 3.5 \cdot \left(\left[\frac{31}{4} \right] + \left[\frac{62}{4} \right] + \left[\frac{42}{4} \right] \right)}{605} = 61\%
$$

2. If the shipments of each item are uncorrelated with each other, no safety stock is carried for each item, and retrievals to the factory floor will occur at a constant rate, what is an estimate the maximum number of units of all items that would ever occur? **Requirements**
tem are uncorrelated with each
arried for each item, and retrievals
ccur at a constant rate, what is an
umber of units of all items that
 $\frac{1}{2}$ = $\frac{31+62+42}{2} + \frac{1}{2}$ = 68 **ea Requirements**

och item are uncorrelated with each

is carried for each item, and retrieve

ill occur at a constant rate, what is a

m number of units of all items that
 $\frac{d_i}{2} + \frac{1}{2} = \left[\frac{31 + 62 + 42}{2} + \frac{1}{2} \right$ **Area Requirements**
of each item are uncorrelated with each
tock is carried for each item, and retrievals
or will occur at a constant rate, what is an
imum number of units of all items that
?
 $\left[\sum_{i=1}^{N} \frac{M_i}{2} + \frac{1}{2}\$ **: Area Requirements**

s of each item are uncorrelated with each

stock is carried for each item, and retrievals

oor will occur at a constant rate, what is an

surimum number of units of all items that
 $\ln r$?
 $=\left[\sum_{i=1$ **Area Requirements**
of each item are uncorrelated with each
tock is carried for each item, and retrievals
or will occur at a constant rate, what is an
imum number of units of all items that
?
 $\left[\sum_{i=1}^{N} \frac{M_i}{2} + \frac{1}{2}\$

$$
M = \left[\sum_{i=1}^{N} \frac{M_i}{2} + \frac{1}{2} \right] = \left[\frac{31 + 62 + 42}{2} + \frac{1}{2} \right] = 68
$$

3. If a randomized policy is used to store the items, what is total 2-D area needed for the storage region?

Ex 26: Area Requirements
\n
$$
F \text{ a randomized policy is used to store the items, what is} \text{otal 2-D area needed for the storage region?}
$$
\n
$$
D=3
$$
\n
$$
L(3) = \left[\frac{M + NH \left(\frac{D-1}{2} \right) + N \left(\frac{H-1}{2} \right)}{DH} \right]
$$
\n
$$
= \left[\frac{68 + 3(4) \left(\frac{3-1}{2} \right) + N \left(\frac{4-1}{2} \right)}{3(4)} \right] = 8 \text{ lanes}
$$
\n
$$
T A(3) = x L(D) \cdot \left(y D + \frac{A}{2} \right) = 3(8) \cdot \left(3.5(3) + \frac{10}{2} \right) = 372 \text{ ft}^2
$$

2

4. What is the optimal lane depth for randomized storage?

$$
D^* = \left\lfloor \sqrt{\frac{A(2M-N)}{2NyH}} + \frac{1}{2} \right\rfloor = \left\lfloor \sqrt{\frac{10(2(68)-3)}{2(3)3.5(4)}} + \frac{1}{2} \right\rfloor = 4
$$

5. What is the change in total area associated with using the optimal lane depth as opposed to storing the items three deep?

Ex 26: Area Requirements
at is the optimal lane depth for randomized storage?

$$
D^* = \left[\sqrt{\frac{A(2M-N)}{2NyH}} + \frac{1}{2} \right] = \left[\sqrt{\frac{10(2(68)-3)}{2(333.5(4)}} + \frac{1}{2} \right] = 4
$$

at is the change in total area associated with using the
imal lane depth as opposed to storing the items three
np?

$$
D = 4 \Rightarrow L(4) = \left[\frac{68 + 3(4)(\frac{4-1}{2}) + N(\frac{4-1}{2})}{3(4)} \right] = 6
$$
 lanes

$$
\Rightarrow TA(4) = 3(6) \cdot \left(3.5(4) + \frac{10}{2} \right) = 342 \text{ ft}^2
$$

$$
D = 3 \Rightarrow TA(3) = 372 \text{ ft}^2
$$

2

Ex 27: Trailer Loading

How many identical $48 \times 42 \times 36$ in. four-way containers can be shipped in a full truckload? Each container load:

- 1. Weighs 600 lb
- 2. Can be stacked up to six high without causing damage from crushing
- 3. Can be rotated on the trucks with respect to their width and depth.

